This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n19http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n10http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Extension_neural_network
rdf:type
yago:Communication100033020 yago:Specification106725067 yago:WikicatArtificialNeuralNetworks yago:Message106598915 yago:ComputerArchitecture106725249 dbo:Software yago:NeuralNetwork106725467 yago:Abstraction100002137 yago:Description106724763 yago:Statement106722453
rdfs:label
Extension neural network
rdfs:comment
Extension neural network is a pattern recognition method found by M. H. Wang and C. P. Hung in 2003 to classify instances of data sets. Extension neural network is composed of artificial neural network and extension theory concepts. It uses the fast and adaptive learning capability of neural network and correlation estimation property of extension theory by calculating extension distance. ENN was used in:
foaf:depiction
n10:ExtendedCorrelationFunction.jpg
dcterms:subject
dbc:Artificial_neural_networks
dbo:wikiPageID
31294087
dbo:wikiPageRevisionID
1068840743
dbo:wikiPageWikiLink
dbr:Artificial_neural_network dbr:Neural_network dbc:Artificial_neural_networks dbr:Fuzzy_set n19:ExtendedCorrelationFunction.jpg
owl:sameAs
freebase:m.0gjdm14 n16:4jf4o yago-res:Extension_neural_network wikidata:Q5421945
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Cite_book dbt:EquationRef dbt:NumBlk
dbo:thumbnail
n10:ExtendedCorrelationFunction.jpg?width=300
dbo:abstract
Extension neural network is a pattern recognition method found by M. H. Wang and C. P. Hung in 2003 to classify instances of data sets. Extension neural network is composed of artificial neural network and extension theory concepts. It uses the fast and adaptive learning capability of neural network and correlation estimation property of extension theory by calculating extension distance. ENN was used in: * Failure detection in machinery. * Tissue classification through MRI. * Fault recognition in automotive engine. * State of charge estimation in lead-acid battery. * Classification with incomplete survey data.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Extension_neural_network?oldid=1068840743&ns=0
dbo:wikiPageLength
10631
foaf:isPrimaryTopicOf
wikipedia-en:Extension_neural_network
Subject Item
dbr:ENN
dbo:wikiPageWikiLink
dbr:Extension_neural_network
dbo:wikiPageDisambiguates
dbr:Extension_neural_network
Subject Item
wikipedia-en:Extension_neural_network
foaf:primaryTopic
dbr:Extension_neural_network