This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n19https://citeseerx.ist.psu.edu/viewdoc/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Evolutionary_Algorithm_for_Landmark_Detection
rdf:type
yago:Algorithm105847438 yago:Event100029378 yago:YagoPermanentlyLocatedEntity yago:Activity100407535 yago:Act100030358 yago:Abstraction100002137 yago:Rule105846932 yago:Procedure101023820 yago:WikicatEvolutionaryAlgorithms yago:PsychologicalFeature100023100
rdfs:label
Evolutionary Algorithm for Landmark Detection
rdfs:comment
There are several algorithms for locating landmarks in images such as satellite maps, medical images etc.Nowadays evolutionary algorithms such as particle swarm optimization are so useful to perform this task. evolutionary algorithms generally have two phase, training and test.
dcterms:subject
dbc:Evolutionary_algorithms
dbo:wikiPageID
29768590
dbo:wikiPageRevisionID
1092618666
dbo:wikiPageWikiLink
dbr:Particle_swarm_optimization dbr:Satellite_map dbr:Mathematical_optimization dbr:Iteration dbr:Particle dbr:Landmark dbr:Medical_image dbc:Evolutionary_algorithms dbr:Algorithm dbr:Evolutionary_algorithm dbr:Formula
dbo:wikiPageExternalLink
n19:summary%3Fdoi=10.1.1.72.3218
owl:sameAs
freebase:m.0fp_gb5 yago-res:Evolutionary_Algorithm_for_Landmark_Detection n16:4k2yG wikidata:Q5418671
dbp:wikiPageUsesTemplate
dbt:Cleanup dbt:Cleanup_rewrite dbt:No_footnotes dbt:Short_description dbt:Multiple_issues
dbo:abstract
There are several algorithms for locating landmarks in images such as satellite maps, medical images etc.Nowadays evolutionary algorithms such as particle swarm optimization are so useful to perform this task. evolutionary algorithms generally have two phase, training and test.
gold:hypernym
dbr:Algorithms
prov:wasDerivedFrom
wikipedia-en:Evolutionary_Algorithm_for_Landmark_Detection?oldid=1092618666&ns=0
dbo:wikiPageLength
2698
foaf:isPrimaryTopicOf
wikipedia-en:Evolutionary_Algorithm_for_Landmark_Detection
Subject Item
dbr:Outline_of_machine_learning
dbo:wikiPageWikiLink
dbr:Evolutionary_Algorithm_for_Landmark_Detection
Subject Item
wikipedia-en:Evolutionary_Algorithm_for_Landmark_Detection
foaf:primaryTopic
dbr:Evolutionary_Algorithm_for_Landmark_Detection