This HTML5 document contains 92 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n19http://matwbn.icm.edu.pl/ksiazki/cm/cm8/
dcthttp://purl.org/dc/terms/
n18http://matwbn.icm.edu.pl/ksiazki/cm/cm10/
n20http://matwbn.icm.edu.pl/ksiazki/mon/mon07/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://books.google.com/
n16https://www.cambridge.org/core/books/primer-of-real-functions/
n17https://global.dbpedia.org/id/
n10https://archive.org/details/in.ernet.dli.2015.141035/page/n173/mode/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n23https://archive.org/details/theoryfunctions00hobsgoog/page/244/mode/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n15https://archive.org/details/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n22https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/plms/

Statements

Subject Item
dbr:Monotonic_function
dbo:wikiPageWikiLink
dbr:Discontinuities_of_monotone_functions
Subject Item
dbr:Measure_(mathematics)
dbo:wikiPageWikiLink
dbr:Discontinuities_of_monotone_functions
Subject Item
dbr:Froda's_theorem
dbo:wikiPageWikiLink
dbr:Discontinuities_of_monotone_functions
dbo:wikiPageRedirects
dbr:Discontinuities_of_monotone_functions
Subject Item
dbr:Discontinuities_of_monotone_functions
rdfs:label
Théorème de Froda Discontinuities of monotone functions
rdfs:comment
In the mathematical field of analysis, a well-known theorem describes the set of discontinuities of a monotone real-valued function of a real variable; all discontinuities of such a (monotone) function are necessarily jump discontinuities and there are at most countably many of them. En analyse réelle, le théorème de Froda, redécouvert en 1929 par le mathématicien roumain Alexandru Froda mais dont des versions plus générales avaient été trouvées de 1907 à 1910 par Grace Chisholm Young et William Henry Young, assure que l'ensemble des points de discontinuité de première espèce d'une fonction réelle d'une variable réelle (définie sur un intervalle) est au plus dénombrable.
dct:subject
dbc:Theorems_in_real_analysis dbc:Continuous_mappings dbc:Articles_containing_proofs
dbo:wikiPageID
22278053
dbo:wikiPageRevisionID
1097505803
dbo:wikiPageWikiLink
dbr:Closed_set dbr:Injective_function dbr:Indicator_function dbr:Step_function dbr:Jean_Gaston_Darboux dbr:Removable_discontinuity dbr:Addison-Wesley dbr:Discontinuity_(mathematics) dbr:Jump_discontinuity dbr:Sequence dbr:Heine–Borel_theorem dbr:Cambridge_University_Press dbr:Proc._London_Math._Soc. dbr:Restriction_of_a_map dbc:Theorems_in_real_analysis dbr:Essential_discontinuity dbr:Rational_number dbr:Henri_Lebesgue dbc:Continuous_mappings dbr:Monotonic_function dbr:Countable_set dbr:Dini_derivative dbr:John_Wiley_&_Sons dbr:Compact_set dbr:Mathematical_Association_of_America dbr:Bounded_set dbr:Princeton_University_Press dbc:Articles_containing_proofs dbr:Disjoint_sets dbr:Null_set dbr:Alexandru_Froda dbr:Interval_(mathematics) dbr:Empty_set dbr:Monotone_function dbr:Mathematics dbr:Springer-Verlag dbr:Limit_from_the_left dbr:Limit_from_the_right dbr:Real-valued_function dbr:Almost_everywhere dbr:Mathematical_analysis
dbo:wikiPageExternalLink
n6:books%3Fid=D_XBAgAAQBAJ&pg=PA28 n10:2up n15:lebesgueintegral0000burk n16:097C383F0BF28D65F3D32D9A9924548B n18:cm10138.pdf n19:cm8115.pdf%7Cmr=0126513 n19:cm8136.pdf%7Cmr=0158036%7Clast=Lipi%C5%84ski%7Cfirst= n20:mon0703.pdf n22:s2-9.1.325%7Cfirst1=William n23:2up%7C n15:theoryoffunction00nat%7Cmr=0067952 n15:introductiontoth0000ojas
owl:sameAs
wikidata:Q5505114 n17:4jLeP dbpedia-fr:Théorème_de_Froda
dbp:wikiPageUsesTemplate
dbt:Var dbt:Efn dbt:Notelist dbt:Cite_journal dbt:Collapse_begin dbt:Harvtxt dbt:Short_description dbt:Reflist dbt:Citation dbt:Collapse_end dbt:Use_dmy_dates dbt:Sfn dbt:Annotated_link dbt:Mvar dbt:Cite_book
dbp:left
yes
dbp:title
Proof that a jump function has zero derivative almost everywhere.
dbo:abstract
En analyse réelle, le théorème de Froda, redécouvert en 1929 par le mathématicien roumain Alexandru Froda mais dont des versions plus générales avaient été trouvées de 1907 à 1910 par Grace Chisholm Young et William Henry Young, assure que l'ensemble des points de discontinuité de première espèce d'une fonction réelle d'une variable réelle (définie sur un intervalle) est au plus dénombrable. In the mathematical field of analysis, a well-known theorem describes the set of discontinuities of a monotone real-valued function of a real variable; all discontinuities of such a (monotone) function are necessarily jump discontinuities and there are at most countably many of them. Usually, this theorem appears in literature without a name. It is called Froda's theorem in some recent works; in his 1929 dissertation, Alexandru Froda stated that the result was previously well-known and had provided his own elementary proof for the sake of convenience. Prior work on discontinuities had already been discussed in the 1875 memoir of the French mathematician Jean Gaston Darboux.
prov:wasDerivedFrom
wikipedia-en:Discontinuities_of_monotone_functions?oldid=1097505803&ns=0
dbo:wikiPageLength
28025
foaf:isPrimaryTopicOf
wikipedia-en:Discontinuities_of_monotone_functions
Subject Item
wikipedia-en:Discontinuities_of_monotone_functions
foaf:primaryTopic
dbr:Discontinuities_of_monotone_functions