This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Conjugate-permutable_subgroup
rdf:type
yago:Possession100032613 dbo:EthnicGroup yago:Abstraction100002137 yago:Property113244109 yago:WikicatSubgroupProperties yago:Relation100031921
rdfs:label
Conjugate-permutable subgroup
rdfs:comment
In mathematics, in the field of group theory, a conjugate-permutable subgroup is a subgroup that commutes with all its conjugate subgroups. The term was introduced by Tuval Foguel in 1997 and arose in the context of the proof that for finite groups, every quasinormal subgroup is a subnormal subgroup. Clearly, every quasinormal subgroup is conjugate-permutable. In fact, it is true that for a finite group: Conversely, every 2-subnormal subgroup (that is, a subgroup that is a normal subgroup of a normal subgroup) is conjugate-permutable.
dcterms:subject
dbc:Subgroup_properties
dbo:wikiPageID
3247924
dbo:wikiPageRevisionID
950883472
dbo:wikiPageWikiLink
dbr:Finite_group dbr:Quasinormal_subgroup dbr:Subnormal_subgroup dbr:Mathematics dbr:Tuval_Foguel dbr:Group_theory dbr:Conjugate_subgroup dbr:Subgroup dbr:Normal_subgroup dbc:Subgroup_properties
owl:sameAs
yago-res:Conjugate-permutable_subgroup wikidata:Q5161148 n15:4iLht freebase:m.0913bx
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In mathematics, in the field of group theory, a conjugate-permutable subgroup is a subgroup that commutes with all its conjugate subgroups. The term was introduced by Tuval Foguel in 1997 and arose in the context of the proof that for finite groups, every quasinormal subgroup is a subnormal subgroup. Clearly, every quasinormal subgroup is conjugate-permutable. In fact, it is true that for a finite group: * Every maximal conjugate-permutable subgroup is normal. * Every conjugate-permutable subgroup is a conjugate-permutable subgroup of every intermediate subgroup containing it. * Combining the above two facts, every conjugate-permutable subgroup is subnormal. Conversely, every 2-subnormal subgroup (that is, a subgroup that is a normal subgroup of a normal subgroup) is conjugate-permutable.
gold:hypernym
dbr:Subgroup
prov:wasDerivedFrom
wikipedia-en:Conjugate-permutable_subgroup?oldid=950883472&ns=0
dbo:wikiPageLength
1213
foaf:isPrimaryTopicOf
wikipedia-en:Conjugate-permutable_subgroup
Subject Item
dbr:Subnormal_subgroup
dbo:wikiPageWikiLink
dbr:Conjugate-permutable_subgroup
Subject Item
dbr:Tuval_Foguel
dbo:wikiPageWikiLink
dbr:Conjugate-permutable_subgroup
Subject Item
dbr:Conjugate-permutable
dbo:wikiPageWikiLink
dbr:Conjugate-permutable_subgroup
dbo:wikiPageRedirects
dbr:Conjugate-permutable_subgroup
Subject Item
dbr:Conjugate_permutable_subgroup
dbo:wikiPageWikiLink
dbr:Conjugate-permutable_subgroup
dbo:wikiPageRedirects
dbr:Conjugate-permutable_subgroup
Subject Item
wikipedia-en:Conjugate-permutable_subgroup
foaf:primaryTopic
dbr:Conjugate-permutable_subgroup