This HTML5 document contains 54 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n11https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Computably_inseparable
rdfs:label
Computably inseparable 帰納的分離不能対
rdfs:comment
In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set. These sets arise in the study of computability theory itself, particularly in relation to Π01 classes. Computably inseparable sets also arise in the study of Gödel's incompleteness theorem. 計算可能性理論において帰納的分離不能対(きのうてきぶんりふのうつい、英: recursively inseparable pair)とは自然数の集合の対で帰納的集合によって分離できないものをいう(Monk 1976, p. 100)。この概念は計算理論におけるΠ1集合と関係が深い。帰納的分離不能対はゲーデルの不完全性定理とも関係する。
dcterms:subject
dbc:Computability_theory
dbo:wikiPageID
26004614
dbo:wikiPageRevisionID
1030696284
dbo:wikiPageWikiLink
dbr:Springer-Verlag dbr:Computably_enumerable dbr:Partial_computable_function dbr:Computable_set dbr:Gödel's_incompleteness_theorem dbr:Pi01_class dbr:Gödel_numbering dbr:William_Gasarch dbr:Peano_arithmetic dbc:Computability_theory dbr:Computability_theory
dbo:wikiPageExternalLink
n11:mathematicallogi00jdon
owl:sameAs
wikidata:Q7303355 dbpedia-ja:帰納的分離不能対 n14:4tnZp
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Overbar dbt:Su dbt:Citation
dbp:b
1
dbp:p
0
dbo:abstract
計算可能性理論において帰納的分離不能対(きのうてきぶんりふのうつい、英: recursively inseparable pair)とは自然数の集合の対で帰納的集合によって分離できないものをいう(Monk 1976, p. 100)。この概念は計算理論におけるΠ1集合と関係が深い。帰納的分離不能対はゲーデルの不完全性定理とも関係する。 In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set. These sets arise in the study of computability theory itself, particularly in relation to Π01 classes. Computably inseparable sets also arise in the study of Gödel's incompleteness theorem.
prov:wasDerivedFrom
wikipedia-en:Computably_inseparable?oldid=1030696284&ns=0
dbo:wikiPageLength
3376
foaf:isPrimaryTopicOf
wikipedia-en:Computably_inseparable
Subject Item
dbr:Recursively_inseparable_sets
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Effectively_inseparable
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Effectively_inseparable_sets
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Effectively_separable
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Effectively_separable_set
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Effectively_separable_sets
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Recursive_inseparability
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Recursively_inseparable
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Recursively_separable
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
dbr:Recursively_separable_sets
dbo:wikiPageWikiLink
dbr:Computably_inseparable
dbo:wikiPageRedirects
dbr:Computably_inseparable
Subject Item
wikipedia-en:Computably_inseparable
foaf:primaryTopic
dbr:Computably_inseparable