This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_chaotic_maps
dbo:wikiPageWikiLink
dbr:Complex_squaring_map
Subject Item
dbr:Complex_quadratic_polynomial
dbo:wikiPageWikiLink
dbr:Complex_squaring_map
Subject Item
dbr:Complex_squaring_map
rdf:type
yago:Artifact100021939 yago:PhysicalEntity100001930 yago:Map103720163 yago:Creation103129123 dbo:ArtificialSatellite yago:Object100002684 yago:WikicatChaoticMaps yago:Representation104076846 yago:Whole100003553
rdfs:label
Complex squaring map
rdfs:comment
In mathematics, the complex squaring map, a polynomial mapping of degree two, is a simple and accessible demonstration of chaos in dynamical systems. It can be constructed by performing the following steps: 1. * Choose any complex number on the unit circle whose argument (angle) is not a rational multiple of π, 2. * Repeatedly square that number.
dct:subject
dbc:Chaotic_maps
dbo:wikiPageID
23868295
dbo:wikiPageRevisionID
1038755943
dbo:wikiPageWikiLink
dbr:Sequence dbr:Natural_number dbr:Mathematics dbr:Logistic_map dbr:Rational_number dbr:Dyadic_transformation dbr:Euler's_formula dbr:Orbit_(dynamics) dbr:Dynamical_system dbr:Degree_of_a_polynomial dbr:Number_base dbr:Quadratic_function dbr:Complex_number dbr:Polynomial dbr:Chaos_theory dbr:Radian dbr:Complex_quadratic_map dbr:Unit_circle dbc:Chaotic_maps
owl:sameAs
freebase:m.076y0ct n11:4hhtt yago-res:Complex_squaring_map wikidata:Q5156606
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Chaos_theory dbt:Wikibooks
dbo:abstract
In mathematics, the complex squaring map, a polynomial mapping of degree two, is a simple and accessible demonstration of chaos in dynamical systems. It can be constructed by performing the following steps: 1. * Choose any complex number on the unit circle whose argument (angle) is not a rational multiple of π, 2. * Repeatedly square that number. This repetition (iteration) produces a sequence of complex numbers that can be described alone by their arguments. Any choice of starting angle that satisfies (1) above will produce an extremely complicated sequence of angles, that belies the simplicity of the steps. It can be shown that the sequence will be chaotic, i.e. it is sensitive to the detailed choice of starting angle.
gold:hypernym
dbr:Demonstration
prov:wasDerivedFrom
wikipedia-en:Complex_squaring_map?oldid=1038755943&ns=0
dbo:wikiPageLength
3239
foaf:isPrimaryTopicOf
wikipedia-en:Complex_squaring_map
Subject Item
wikipedia-en:Complex_squaring_map
foaf:primaryTopic
dbr:Complex_squaring_map