This HTML5 document contains 67 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Viacheslav_Belavkin
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
dbp:knownFor
dbr:Choi's_theorem_on_completely_positive_maps
dbo:knownFor
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Peres–Horodecki_criterion
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Completely_positive_map
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Quantum_channel
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Naimark's_dilation_theorem
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Positive_map
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
dbo:wikiPageDisambiguates
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Quantum_operation
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Choi's_theorem_on_completely_positive_maps
rdf:type
yago:Theorem106752293 yago:Abstraction100002137 yago:Proposition106750804 yago:Message106598915 yago:WikicatTheoremsInFunctionalAnalysis yago:Communication100033020 yago:Statement106722453
rdfs:label
Choi's theorem on completely positive maps Application complètement positive
rdfs:comment
En mathématiques, une application positive entre deux C*-algèbres est une application linéaire qui est croissante, c'est-à-dire qui envoie tout (en) sur un élément positif. Une application complètement positive est une application telle que pour tout entier naturel k, l'application induite, entre les algèbres correspondantes de matrices carrées d'ordre k, est positive. Les applications complètement positives entre C*-algèbres de matrices sont classifiées par un théorème dû à Man-Duen Choi. Le « théorème de Radon-Nikodym de (en) pour les applications complètement positives » est une généralisation algébrique en dimension infinie. In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin's "Radon–Nikodym" theorem for completely positive maps.
dcterms:subject
dbc:Operator_theory dbc:Theorems_in_functional_analysis dbc:Linear_algebra dbc:Articles_containing_proofs
dbo:wikiPageID
5168898
dbo:wikiPageRevisionID
1119752775
dbo:wikiPageWikiLink
dbr:Viacheslav_Belavkin dbc:Operator_theory dbr:C*-algebra dbr:Stinespring_factorization_theorem dbr:Radon–Nikodym_theorem dbr:Mathematics dbr:Hilbert–Schmidt_operator dbr:Kraus_operator dbr:Inner_product dbc:Theorems_in_functional_analysis dbr:Karl_Kraus_(physicist) dbr:Holevo's_theorem dbr:Completely_positive_map dbc:Linear_algebra dbc:Articles_containing_proofs dbr:Quantum_information_theory dbr:Quantum_operation
owl:sameAs
freebase:m.0d6044 n11:4heSg wikidata:Q5103861 yago-res:Choi's_theorem_on_completely_positive_maps dbpedia-fr:Application_complètement_positive
dbp:wikiPageUsesTemplate
dbt:= dbt:Short_description dbt:Mvar dbt:Functional_analysis dbt:Math
dbo:abstract
In mathematics, Choi's theorem on completely positive maps is a result that classifies completely positive maps between finite-dimensional (matrix) C*-algebras. An infinite-dimensional algebraic generalization of Choi's theorem is known as Belavkin's "Radon–Nikodym" theorem for completely positive maps. En mathématiques, une application positive entre deux C*-algèbres est une application linéaire qui est croissante, c'est-à-dire qui envoie tout (en) sur un élément positif. Une application complètement positive est une application telle que pour tout entier naturel k, l'application induite, entre les algèbres correspondantes de matrices carrées d'ordre k, est positive. Les applications complètement positives entre C*-algèbres de matrices sont classifiées par un théorème dû à Man-Duen Choi. Le « théorème de Radon-Nikodym de (en) pour les applications complètement positives » est une généralisation algébrique en dimension infinie.
gold:hypernym
dbr:Result
prov:wasDerivedFrom
wikipedia-en:Choi's_theorem_on_completely_positive_maps?oldid=1119752775&ns=0
dbo:wikiPageLength
7885
foaf:isPrimaryTopicOf
wikipedia-en:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Channel-state_duality
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:S._L._Woronowicz
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Stinespring_dilation_theorem
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
dbr:Choi_theorem_on_completely_positive_maps
dbo:wikiPageWikiLink
dbr:Choi's_theorem_on_completely_positive_maps
dbo:wikiPageRedirects
dbr:Choi's_theorem_on_completely_positive_maps
Subject Item
wikipedia-en:Choi's_theorem_on_completely_positive_maps
foaf:primaryTopic
dbr:Choi's_theorem_on_completely_positive_maps