This HTML5 document contains 32 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Bertil_Näslund
dbo:wikiPageWikiLink
dbr:Chance-constrained_portfolio_selection
Subject Item
dbr:Andrew_B._Whinston
dbo:wikiPageWikiLink
dbr:Chance-constrained_portfolio_selection
Subject Item
dbr:Abraham_Charnes
dbo:wikiPageWikiLink
dbr:Chance-constrained_portfolio_selection
Subject Item
dbr:Capital_asset_pricing_model
dbo:wikiPageWikiLink
dbr:Chance-constrained_portfolio_selection
Subject Item
dbr:Chance-constrained_portfolio_selection
rdfs:label
Chance-constrained portfolio selection
rdfs:comment
This article describes the original implementation of the portfolio selection under Loss aversion. Its formulation, itself based upon the seminal work of Abraham Charnes and William W. Cooper on stochastic programming assumes that investor’s preferences are representable by the expected utility of final wealth and the probability that final wealth be below a survival or safety level s. As stated by N. H. Agnew, et al and Bertil Naslund and Andrew B. Whinston the chance-constrained portfolio problem is: max wjE(Xj), subject to Pr( wjXj < s) ≤ α, wj = 1, wj ≥ 0 for all j,
dcterms:subject
dbc:Portfolio_theories
dbo:wikiPageID
65416418
dbo:wikiPageRevisionID
1032654442
dbo:wikiPageWikiLink
dbr:Karl_H._Borch dbr:Risk_aversion dbr:Expected_utility_theory dbr:Stochastic_programming dbr:Bertil_Naslund dbr:Andrew_B._Whinston dbr:Lexicographic_preferences dbr:Stephen_J._Turnovsky dbr:William_W._Cooper dbr:Loss_aversion dbr:Portfolio_optimization dbc:Portfolio_theories dbr:Capital_asset_pricing_model dbr:Abraham_Charnes
owl:sameAs
n8:FeDDP wikidata:Q104858892
dbp:wikiPageUsesTemplate
dbt:Math
dbo:abstract
This article describes the original implementation of the portfolio selection under Loss aversion. Its formulation, itself based upon the seminal work of Abraham Charnes and William W. Cooper on stochastic programming assumes that investor’s preferences are representable by the expected utility of final wealth and the probability that final wealth be below a survival or safety level s. As stated by N. H. Agnew, et al and Bertil Naslund and Andrew B. Whinston the chance-constrained portfolio problem is: max wjE(Xj), subject to Pr( wjXj < s) ≤ α, wj = 1, wj ≥ 0 for all j, where s is the survival level and α is the admissible probability of ruin. David H. Pyle and Stephen J. Turnovsky investigated the risk aversion properties of chance-constrained portfolio selection. Karl H. Borch observed that no utility function can represent the preference ordering of chance- constrained programming because a fixed α does not admit compensation for a small increase in α by any increase in expected wealth. For fixed α the chance-constrained portfolio problem represents Lexicographic preferences and is an implementation of capital asset pricing under loss aversion. Bay et al. provide a survey of chance-constrained solution methods. J. Seppälä compared chance-constrained solutions to mean-variance and safety-first portfolio problems.
prov:wasDerivedFrom
wikipedia-en:Chance-constrained_portfolio_selection?oldid=1032654442&ns=0
dbo:wikiPageLength
4680
foaf:isPrimaryTopicOf
wikipedia-en:Chance-constrained_portfolio_selection
Subject Item
dbr:Stochastic_programming
dbo:wikiPageWikiLink
dbr:Chance-constrained_portfolio_selection
Subject Item
wikipedia-en:Chance-constrained_portfolio_selection
foaf:primaryTopic
dbr:Chance-constrained_portfolio_selection