This HTML5 document contains 57 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
n11http://pi.math.cornell.edu/~hatcher/AT/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Algebraic_topology
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
Subject Item
dbr:Homotopy_groups_of_spheres
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
Subject Item
dbr:Glossary_of_algebraic_topology
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
Subject Item
dbr:Fundamental_group
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
Subject Item
dbr:Cellular_map
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
dbo:wikiPageRedirects
dbr:Cellular_approximation_theorem
Subject Item
dbr:Cellular_approximation_theorem
rdf:type
yago:Proposition106750804 yago:Statement106722453 yago:WikicatTheoremsInAlgebraicTopology yago:Communication100033020 yago:Message106598915 yago:Abstraction100002137 yago:Theorem106752293
rdfs:label
Cellular approximation theorem
rdfs:comment
In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : X → Y is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : X → Y between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.
dcterms:subject
dbc:Theorems_in_algebraic_topology
dbo:wikiPageID
21537120
dbo:wikiPageRevisionID
1093388520
dbo:wikiPageWikiLink
dbr:Homotopy_group dbr:CW_complex dbr:CW-complex dbr:Canonical_form dbr:CW-pair dbr:Non-trivial dbr:Map_(mathematics) dbr:Path-connected dbr:N-skeleton dbr:Algebraic_topology dbr:Closure_(topology) dbr:Compact_set dbr:Mathematical_induction dbr:Deformation_retraction dbr:Image_(mathematics) dbr:Homotopy dbc:Theorems_in_algebraic_topology dbr:Weak_equivalence_(homotopy_theory) dbr:N-connected dbr:Function_(mathematics) dbr:Base-point dbr:Cambridge_University_Press dbr:Intersection_(set_theory) dbr:Homotopy_extension_property
dbo:wikiPageExternalLink
n11:ATpage.html
owl:sameAs
yago-res:Cellular_approximation_theorem freebase:m.05h5d5m wikidata:Q5058350 n10:4ge6a
dbp:wikiPageUsesTemplate
dbt:Mvar dbt:Citation
dbo:abstract
In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : X → Y is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : X → Y between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.
prov:wasDerivedFrom
wikipedia-en:Cellular_approximation_theorem?oldid=1093388520&ns=0
dbo:wikiPageLength
8065
foaf:isPrimaryTopicOf
wikipedia-en:Cellular_approximation_theorem
Subject Item
dbr:Cap_product
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
Subject Item
dbr:Cellular_approximation
dbo:wikiPageWikiLink
dbr:Cellular_approximation_theorem
dbo:wikiPageRedirects
dbr:Cellular_approximation_theorem
Subject Item
wikipedia-en:Cellular_approximation_theorem
foaf:primaryTopic
dbr:Cellular_approximation_theorem