This HTML5 document contains 172 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
n15https://www.youtube.com/
n8http://www.cs.caltech.edu/~cs175/cs175-02/resources/
dbohttp://dbpedia.org/ontology/
n21http://www.computer.org/csdl/trans/tg/2010/05/
n29http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16http://mrl.nyu.edu/~dzorin/papers/
n33https://archive.org/details/computergraphics1998sigg/page/
n12https://global.dbpedia.org/id/
dbpedia-hehttp://he.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n5http://graphics.pixar.com/library/Geri/
freebasehttp://rdf.freebase.com/ns/
n19http://research.microsoft.com/en-us/um/people/cloop/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://advances.realtimerendering.com/s2014/wade/
n26https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n31https://dx.doi.org/10.1016/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:University_of_Utah
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Doo–Sabin_subdivision_surface
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Edwin_Catmull
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbp:knownFor
dbr:Catmull–Clark_subdivision_surface
dbo:knownFor
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Strata_3D
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Subdivision_surface
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Matthias_Niessner
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Goldberg–Coxeter_construction
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:James_H._Clark
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull–Clark_subdivision_surface
rdf:type
yago:Rule105846932 yago:PsychologicalFeature100023100 yago:Act100030358 yago:Algorithm105847438 yago:Procedure101023820 yago:WikicatComputerGraphicsAlgorithms yago:Activity100407535 yago:Event100029378 dbo:TopicalConcept yago:YagoPermanentlyLocatedEntity yago:Abstraction100002137
rdfs:label
Алгоритм Катмулла — Кларка Catmull–Clark subdivision surface Catmull–Clark Subdivision Surface
rdfs:comment
The Catmull–Clark algorithm is a technique used in 3D computer graphics to create curved surfaces by using subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. Der Catmull-Clark Algorithmus wird bei Computergrafiken verwendet, um durch Unterteilung (englisch subdivision) von Flächen, gleichmäßig verlaufende Oberflächen (englisch surfaces) zu erstellen. Der Algorithmus wurde 1978 von Edwin Catmull und James Clark entwickelt. 2006 erhielt Edwin Catmull gemeinsam mit und den Oscar für technische Verdienste für die Erfindung und Entwicklung ihrer Subdivision-Surface-Methode. Алгоритм Катмулла — Кларка — это техника, используемая в компьютерной графике для создания гладких поверхностей путём моделирования . Алгоритм разработали Эдвин Катмулл и Джеймс Кларк в 1978 как обобщение бикубических однородных B-сплайновых поверхностей для произвольной топологии. В 2005 году Эдвин Катмулл получил вместе с Тони Дероузом и за их разработки в области подразделения поверхностей.
foaf:depiction
n7:Catmull-Clark_recursive_step_6.png n7:Catmull-Clark_subdivision_of_a_cube.svg n7:Catmull-Clark_Recursive_Step_5.png n7:Catmull-Clark_limit_surface_of_Cube_(compare_sphere).png n7:Catmull-Clark_Recursive_Step_3.png n7:Catmull-Clark_Recursive_Step_4.png n7:Catmull-Clark_Recursive_Step_1.png n7:Catmull-Clark_Recursive_Step_2.png
dcterms:subject
dbc:Multivariate_interpolation dbc:3D_computer_graphics
dbo:wikiPageID
1323068
dbo:wikiPageRevisionID
1099195942
dbo:wikiPageWikiLink
dbr:Blender_(software) dbr:Average dbr:OpenSubdiv dbr:Autodesk_3ds_Max dbr:Spline_(mathematics) dbr:Polygon_mesh dbr:Softimage_XSI dbr:Makehuman dbr:Shade_3D dbr:Doo–Sabin_subdivision_surface dbr:Maya_(software) dbr:3D_modeling dbr:Tony_DeRose dbr:Continuously_differentiable dbr:3D_computer_graphics dbr:Jos_Stam dbr:Zbrush dbr:Topology dbr:Conway_polyhedron_notation dbr:Valve_Hammer_Editor dbr:Algorithm dbr:Silo_(software) dbr:Academy_Award_for_Technical_Achievement dbr:AutoCAD dbr:Carrara_(software) dbr:Smooth_function dbr:AC3D dbr:Cheetah3D dbr:Edwin_Catmull dbr:Loop_subdivision_surface dbr:Vertex_(geometry) dbr:CATIA dbr:Houdini_(software) dbr:Gelato_(software) dbr:3D-Coat dbr:Aesthetics dbr:LightWave dbr:CGAL dbc:Multivariate_interpolation dbr:Mudbox dbr:Strata_3D dbr:Metasequoia_(software) dbr:SketchUp dbr:NPowerSoftware_Power_Surfacing dbr:Convergence_(math) dbr:Plane_(mathematics) dbr:Mathematical_proof dbr:Recursion dbr:Barycenter dbr:Clara.io dbr:Cinema4D dbr:Hexagon_(software) dbr:Remo_3D dbr:James_H._Clark dbc:3D_computer_graphics n29:Catmull-Clark_Recursive_Step_1.png n29:Catmull-Clark_Recursive_Step_2.png dbr:PhotoRealistic_RenderMan dbr:Anim8or dbr:Realsoft3D n29:Catmull-Clark_recursive_step_6.png dbr:Wings_3D n29:Catmull-Clark_subdivision_of_a_cube.svg n29:Catmull-Clark_Recursive_Step_3.png n29:Catmull-Clark_Recursive_Step_4.png n29:Catmull-Clark_Recursive_Step_5.png n29:Catmull-Clark_limit_surface_of_Cube_(compare_sphere).png dbr:Subdivision_surface dbr:Matrix_diagonalization dbr:Rhinoceros_3D dbr:DeleD_Community_Edition dbr:Matrix_exponential dbr:DeleD_Designer dbr:PTC_Creo dbr:Quadrilateral dbr:Modo_(software) dbr:Polyhedron dbr:Bi-cubic dbr:Daz_Studio dbr:B-spline
dbo:wikiPageExternalLink
n5:paper.pdf%7C n8:DS.pdf n13: n15:watch%3Fv=uogAzQoVdNU n16:kovacs2010rcs.pdf n19:accTOG.pdf%7C n19:tog2012.pdf n21:ttg2010050742.pdf n19:EG2012.pdf n26:GDC2014Brainerd n31:0010-4485(78)90111-2 n33:85
owl:sameAs
n12:8Pce dbpedia-fa:رویه_زیربخش_کتمول-کلارک wikidata:Q1051211 freebase:m.04sqwd dbpedia-he:קטמול-קלרק dbpedia-de:Catmull–Clark_Subdivision_Surface dbpedia-ru:Алгоритм_Катмулла_—_Кларка
dbp:wikiPageUsesTemplate
dbt:Colend dbt:Reflist dbt:Cite_journal dbt:Colbegin dbt:More_citations_needed_section dbt:Cite_book dbt:Doi dbt:Short_description
dbo:thumbnail
n7:Catmull-Clark_subdivision_of_a_cube.svg?width=300
dbo:abstract
Der Catmull-Clark Algorithmus wird bei Computergrafiken verwendet, um durch Unterteilung (englisch subdivision) von Flächen, gleichmäßig verlaufende Oberflächen (englisch surfaces) zu erstellen. Der Algorithmus wurde 1978 von Edwin Catmull und James Clark entwickelt. 2006 erhielt Edwin Catmull gemeinsam mit und den Oscar für technische Verdienste für die Erfindung und Entwicklung ihrer Subdivision-Surface-Methode. The Catmull–Clark algorithm is a technique used in 3D computer graphics to create curved surfaces by using subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. In 2005, Edwin Catmull, together with and Jos Stam, received an Academy Award for Technical Achievement for their invention and application of subdivision surfaces. DeRose wrote about "efficient, fair interpolation" and character animation. Stam described a technique for a direct evaluation of the limit surface without recursion. Алгоритм Катмулла — Кларка — это техника, используемая в компьютерной графике для создания гладких поверхностей путём моделирования . Алгоритм разработали Эдвин Катмулл и Джеймс Кларк в 1978 как обобщение бикубических однородных B-сплайновых поверхностей для произвольной топологии. В 2005 году Эдвин Катмулл получил вместе с Тони Дероузом и за их разработки в области подразделения поверхностей.
gold:hypernym
dbr:Technique
prov:wasDerivedFrom
wikipedia-en:Catmull–Clark_subdivision_surface?oldid=1099195942&ns=0
dbo:wikiPageLength
12430
foaf:isPrimaryTopicOf
wikipedia-en:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-Clark_subdivision_surface
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Finite_subdivision_rule
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Polygonal_modeling
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-Clark
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-Clark_subdivision
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-Clark_subdivision_algorithm
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-clark
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull-clark_subdivision
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
dbr:Catmull–Clark
dbo:wikiPageWikiLink
dbr:Catmull–Clark_subdivision_surface
dbo:wikiPageRedirects
dbr:Catmull–Clark_subdivision_surface
Subject Item
wikipedia-en:Catmull–Clark_subdivision_surface
foaf:primaryTopic
dbr:Catmull–Clark_subdivision_surface