This HTML5 document contains 70 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-nlhttp://nl.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Banach_fixed-point_theorem
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Caristi_fixed-point_theorem
rdf:type
yago:WikicatFixed-pointTheorems yago:Proposition106750804 yago:WikicatTheorems yago:Theorem106752293 yago:Statement106722453 yago:Abstraction100002137 yago:WikicatMathematicalTheorems yago:Communication100033020 yago:Message106598915 yago:WikicatTheoremsInRealAnalysis
rdfs:label
カリスティの不動点定理 Satz von Caristi Teorema di Caristi Dekpuntstelling van Caristi Théorème du point fixe de Caristi Caristi fixed-point theorem
rdfs:comment
De dekpuntenstelling van Caristi is door het geringe aantal eisen dat wordt gesteld zeer geschikt om het bestaan van dekpunten aan te tonen, daar waar andere dekpuntstellingen falen. De stelling is niet constructief en garandeert niet de uniciteit van het dekpunt. カリスティの不動点定理(カリスティのふどうてんていり、英: Caristi fixed-point theorem)あるいはカリスティ=カークの不動点定理(Caristi-Kirk fixed-point theorem)と呼ばれる定理は、数学において、バナッハの不動点定理を完備距離空間からそれ自身への写像に対して一般化するものである。カリスティの不動点定理は、(1974,1979)の ε-を少し変えたものである。また、カリスティの定理の結論が距離完備性と同値であることは Weston (1977) によって示された。元々の結果は、数学者ジェームス・カリスティとによるものである。 In matematica, il teorema di Caristi o teorema di Caristi-Kirk è un teorema di punto fisso che generalizza il teorema delle contrazioni per applicazioni di uno spazio metrico completo in sé. Si tratta di una variante dell'ε-principio variazionale di (1974, 1979). Inoltre, la conclusione del teorema di Caristi è equivalente alla completezza metrica, come dimostrato da Weston (1977). Il risultato originale è dovuto ai matematici e . Le théorème du point fixe de — ou de Caristi– (en) — est un théorème de topologie générale qui étend le théorème du point fixe de Banach-Picard, en garantissant l'existence de points fixes pour une plus large classe d'applications d'un espace métrique complet dans lui-même. Il est équivalent à une forme faible du principe variationnel d'Ekeland. In mathematics, the Caristi fixed-point theorem (also known as the Caristi–Kirk fixed-point theorem) generalizes the Banach fixed-point theorem for maps of a complete metric space into itself. Caristi's fixed-point theorem modifies the ε-variational principle of Ekeland (1974, 1979). The conclusion of Caristi's theorem is equivalent to metric completeness, as proved by Weston (1977). The original result is due to the mathematicians and William Arthur Kirk.
dcterms:subject
dbc:Metric_geometry dbc:Theorems_in_real_analysis dbc:Fixed-point_theorems
dbo:wikiPageID
11962567
dbo:wikiPageRevisionID
1032030287
dbo:wikiPageWikiLink
dbr:Zorn's_lemma dbc:Metric_geometry dbc:Theorems_in_real_analysis dbr:Complete_space dbr:Ivar_Ekeland dbc:Fixed-point_theorems dbr:Functional_equation dbr:Maximal_and_minimal_elements dbr:James_Caristi dbr:Ekeland's_variational_principle dbr:Metric_space dbr:Mathematics dbr:William_Arthur_Kirk dbr:Banach_fixed-point_theorem
owl:sameAs
dbpedia-fr:Théorème_du_point_fixe_de_Caristi yago-res:Caristi_fixed-point_theorem dbpedia-ja:カリスティの不動点定理 dbpedia-nl:Dekpuntstelling_van_Caristi n17:2A56M dbpedia-it:Teorema_di_Caristi wikidata:Q2287393 freebase:m.02rztrx dbpedia-de:Satz_von_Caristi
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In matematica, il teorema di Caristi o teorema di Caristi-Kirk è un teorema di punto fisso che generalizza il teorema delle contrazioni per applicazioni di uno spazio metrico completo in sé. Si tratta di una variante dell'ε-principio variazionale di (1974, 1979). Inoltre, la conclusione del teorema di Caristi è equivalente alla completezza metrica, come dimostrato da Weston (1977). Il risultato originale è dovuto ai matematici e . De dekpuntenstelling van Caristi is door het geringe aantal eisen dat wordt gesteld zeer geschikt om het bestaan van dekpunten aan te tonen, daar waar andere dekpuntstellingen falen. De stelling is niet constructief en garandeert niet de uniciteit van het dekpunt. Le théorème du point fixe de — ou de Caristi– (en) — est un théorème de topologie générale qui étend le théorème du point fixe de Banach-Picard, en garantissant l'existence de points fixes pour une plus large classe d'applications d'un espace métrique complet dans lui-même. Il est équivalent à une forme faible du principe variationnel d'Ekeland. In mathematics, the Caristi fixed-point theorem (also known as the Caristi–Kirk fixed-point theorem) generalizes the Banach fixed-point theorem for maps of a complete metric space into itself. Caristi's fixed-point theorem modifies the ε-variational principle of Ekeland (1974, 1979). The conclusion of Caristi's theorem is equivalent to metric completeness, as proved by Weston (1977). The original result is due to the mathematicians and William Arthur Kirk. Caristi fixed-point theorem can be applied to derive other classical fixed-point results, and also to prove the existence of bounded solutions of a functional equation. カリスティの不動点定理(カリスティのふどうてんていり、英: Caristi fixed-point theorem)あるいはカリスティ=カークの不動点定理(Caristi-Kirk fixed-point theorem)と呼ばれる定理は、数学において、バナッハの不動点定理を完備距離空間からそれ自身への写像に対して一般化するものである。カリスティの不動点定理は、(1974,1979)の ε-を少し変えたものである。また、カリスティの定理の結論が距離完備性と同値であることは Weston (1977) によって示された。元々の結果は、数学者ジェームス・カリスティとによるものである。
prov:wasDerivedFrom
wikipedia-en:Caristi_fixed-point_theorem?oldid=1032030287&ns=0
dbo:wikiPageLength
3751
foaf:isPrimaryTopicOf
wikipedia-en:Caristi_fixed-point_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Fixed-point_theorems
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Caristi-Kirk_fixed_point_theorem
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
dbo:wikiPageRedirects
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Caristi-Kirk_theorem
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
dbo:wikiPageRedirects
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Caristi_fixed_point_theorem
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
dbo:wikiPageRedirects
dbr:Caristi_fixed-point_theorem
Subject Item
dbr:Caristi_theorem
dbo:wikiPageWikiLink
dbr:Caristi_fixed-point_theorem
dbo:wikiPageRedirects
dbr:Caristi_fixed-point_theorem
Subject Item
wikipedia-en:Caristi_fixed-point_theorem
foaf:primaryTopic
dbr:Caristi_fixed-point_theorem