This HTML5 document contains 36 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Browder_fixed_point_theorem
dbo:wikiPageWikiLink
dbr:Browder_fixed-point_theorem
dbo:wikiPageRedirects
dbr:Browder_fixed-point_theorem
Subject Item
dbr:Felix_Browder
dbo:wikiPageWikiLink
dbr:Browder_fixed-point_theorem
dbp:knownFor
dbr:Browder_fixed-point_theorem
dbo:knownFor
dbr:Browder_fixed-point_theorem
Subject Item
dbr:Browder_fixed-point_theorem
rdfs:label
Teorema di Browder-Göhde-Kirk Browder fixed-point theorem
rdfs:comment
The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point. In matematica, il teorema di Browder-Göhde-Kirk è un teorema di punto fisso, dimostrato nel 1966. Stabilisce che un'applicazione non espansiva di un sottoinsieme limitato, chiuso, convesso di uno spazio di Banach in sé ha un punto fisso.
dct:subject
dbc:Fixed-point_theorems
dbo:wikiPageID
49404297
dbo:wikiPageRevisionID
823994693
dbo:wikiPageWikiLink
dbr:Opial_property dbr:Banach_space dbr:Fixed_point_(mathematics) dbr:Felix_Browder dbr:William_Arthur_Kirk dbr:Delta-convergence dbr:Chebyshev_center dbr:Banach_fixed-point_theorem dbr:Convex_set dbr:Fixed-point_theorem dbc:Fixed-point_theorems dbr:Uniformly_convex_space
owl:sameAs
n6:2NvC8 dbpedia-it:Teorema_di_Browder-Göhde-Kirk yago-res:Browder_fixed-point_theorem wikidata:Q25304764
dbp:wikiPageUsesTemplate
dbt:Functional_Analysis
dbo:abstract
The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point. In matematica, il teorema di Browder-Göhde-Kirk è un teorema di punto fisso, dimostrato nel 1966. Stabilisce che un'applicazione non espansiva di un sottoinsieme limitato, chiuso, convesso di uno spazio di Banach in sé ha un punto fisso.
prov:wasDerivedFrom
wikipedia-en:Browder_fixed-point_theorem?oldid=823994693&ns=0
dbo:wikiPageLength
1905
foaf:isPrimaryTopicOf
wikipedia-en:Browder_fixed-point_theorem
Subject Item
dbr:Fixed-point_theorems
dbo:wikiPageWikiLink
dbr:Browder_fixed-point_theorem
Subject Item
wikipedia-en:Browder_fixed-point_theorem
foaf:primaryTopic
dbr:Browder_fixed-point_theorem