An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point.

Property Value
dbo:abstract
  • The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point. (en)
  • In matematica, il teorema di Browder-Göhde-Kirk è un teorema di punto fisso, dimostrato nel 1966. Stabilisce che un'applicazione non espansiva di un sottoinsieme limitato, chiuso, convesso di uno spazio di Banach in sé ha un punto fisso. (it)
dbo:wikiPageID
  • 49404297 (xsd:integer)
dbo:wikiPageLength
  • 1905 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 823994693 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point. (en)
  • In matematica, il teorema di Browder-Göhde-Kirk è un teorema di punto fisso, dimostrato nel 1966. Stabilisce che un'applicazione non espansiva di un sottoinsieme limitato, chiuso, convesso di uno spazio di Banach in sé ha un punto fisso. (it)
rdfs:label
  • Browder fixed-point theorem (en)
  • Teorema di Browder-Göhde-Kirk (it)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License