This HTML5 document contains 91 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n20http://plato.stanford.edu/entries/large-cardinals-determinacy/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n14https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n7http://www.cas.unt.edu/~rdb0003/thesis/

Statements

Subject Item
dbr:Determinacy
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:Émile_Borel
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:Axiom_of_determinacy
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:Axiom_schema_of_replacement
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:Borel_determinacy_theorem
rdf:type
yago:Proposition106750804 yago:Communication100033020 yago:Abstraction100002137 yago:Statement106722453 yago:Message106598915 yago:WikicatTheoremsInTheFoundationsOfMathematics yago:Theorem106752293
rdfs:label
Borel determinacy theorem
rdfs:comment
In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game. A Gale-Stewart game is a possibly infinite two-player game, where both players have perfect information and no randomness is involved.
dcterms:subject
dbc:Determinacy dbc:Theorems_in_the_foundations_of_mathematics
dbo:wikiPageID
15483838
dbo:wikiPageRevisionID
1115668735
dbo:wikiPageWikiLink
dbr:Mathematical_Reviews dbr:Subset dbr:Product_topology dbr:Closed_set dbr:Metamathematics dbr:Axiom_of_choice dbr:Axiom_of_dependent_choice dbr:Consistent dbr:Axiom_of_determinacy dbr:Game_tree dbr:Strategy dbr:Analytic_set dbr:Descriptive_set_theory dbr:Beth_numbers dbr:Topology dbr:Large_cardinal dbr:Stanford_Encyclopedia_of_Philosophy dbr:Cantor_space dbr:Borel_set dbr:Zermelo's_theorem_(game_theory) dbr:Countably_infinite dbr:Projective_set dbr:Borel_hierarchy dbr:Power_set dbr:Set_theory dbr:Property_of_Baire dbr:Large_cardinal_axiom dbr:Donald_A._Martin dbr:Basis_(topology) dbr:Harvey_Friedman dbr:Graduate_Texts_in_Mathematics dbr:Strongly_inaccessible_cardinal dbr:Measurable_cardinal dbc:Determinacy dbr:Annals_of_Mathematics dbr:Sigma-algebra dbr:Polish_space dbc:Theorems_in_the_foundations_of_mathematics dbr:Open_set dbr:Tree_(descriptive_set_theory) dbr:Discrete_topology dbr:Perfect_set_property dbr:Axiom_of_replacement dbr:Zermelo–Fraenkel_set_theory dbr:Baire_space dbr:Topological_product dbr:Determinacy dbr:Axiom_of_projective_determinacy dbr:Cumulative_hierarchy dbr:Large_cardinals
dbo:wikiPageExternalLink
n7:thesis.pdf n14:classicaldescrip0000kech n20:
owl:sameAs
n9:4auZL yago-res:Borel_determinacy_theorem wikidata:Q4944906 freebase:m.03mbvft
dbp:wikiPageUsesTemplate
dbt:Main dbt:MR dbt:Citation_needed dbt:Cite_journal dbt:Cite_book dbt:Center dbt:Reflist
dbo:abstract
In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game. A Gale-Stewart game is a possibly infinite two-player game, where both players have perfect information and no randomness is involved. The theorem is a far reaching generalization of Zermelo's Theorem about the determinacy of finite games. It was proved by Donald A. Martin in 1975, and is applied in descriptive set theory to show that Borel sets in Polish spaces have regularity properties such as the perfect set property and the property of Baire. The theorem is also known for its metamathematical properties. In 1971, before the theorem was proved, Harvey Friedman showed that any proof of the theorem in Zermelo–Fraenkel set theory must make repeated use of the axiom of replacement. Later results showed that stronger determinacy theorems cannot be proven in Zermelo–Fraenkel set theory, although they are relatively consistent with it, if certain large cardinals are consistent.
gold:hypernym
dbr:Borel
prov:wasDerivedFrom
wikipedia-en:Borel_determinacy_theorem?oldid=1115668735&ns=0
dbo:wikiPageLength
13442
foaf:isPrimaryTopicOf
wikipedia-en:Borel_determinacy_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:The_Higher_Infinite
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
Subject Item
dbr:Borel_determinacy
dbo:wikiPageWikiLink
dbr:Borel_determinacy_theorem
dbo:wikiPageRedirects
dbr:Borel_determinacy_theorem
Subject Item
wikipedia-en:Borel_determinacy_theorem
foaf:primaryTopic
dbr:Borel_determinacy_theorem