This HTML5 document contains 42 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_eponyms_(A–K)
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Lethargy_theorem
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Constructive_function_theory
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Bernstein's_theorem_(approximation_theory)
rdf:type
yago:Theorem106752293 yago:Abstraction100002137 yago:Message106598915 yago:Statement106722453 yago:Proposition106750804 yago:Communication100033020 yago:WikicatTheoremsInApproximationTheory
rdfs:label
Bernstein's theorem (approximation theory)
rdfs:comment
In approximation theory, Bernstein's theorem is a converse to Jackson's theorem. The first results of this type were proved by Sergei Bernstein in 1912. For approximation by trigonometric polynomials, the result is as follows: Let f: [0, 2π] → C be a 2π-periodic function, and assume r is a natural number, and 0 < α < 1. If there exists a number C(f) > 0 and a sequence of trigonometric polynomials {Pn}n ≥ n0 such that then f = Pn0 + φ, where φ has a bounded r-th derivative which is α-Hölder continuous.
dcterms:subject
dbc:Theorems_in_approximation_theory
dbo:wikiPageID
32140327
dbo:wikiPageRevisionID
618549696
dbo:wikiPageWikiLink
dbr:Bernstein's_lethargy_theorem dbr:Trigonometric_polynomials dbr:Periodic_function dbr:Constructive_function_theory dbr:Trigonometric_polynomial dbr:Approximation_theory dbc:Theorems_in_approximation_theory dbr:Hölder_condition dbr:Jackson's_inequality dbr:Sergei_Bernstein
owl:sameAs
wikidata:Q4894565 n15:4Y3YH freebase:m.0gwyvj9 yago-res:Bernstein's_theorem_(approximation_theory)
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In approximation theory, Bernstein's theorem is a converse to Jackson's theorem. The first results of this type were proved by Sergei Bernstein in 1912. For approximation by trigonometric polynomials, the result is as follows: Let f: [0, 2π] → C be a 2π-periodic function, and assume r is a natural number, and 0 < α < 1. If there exists a number C(f) > 0 and a sequence of trigonometric polynomials {Pn}n ≥ n0 such that then f = Pn0 + φ, where φ has a bounded r-th derivative which is α-Hölder continuous.
prov:wasDerivedFrom
wikipedia-en:Bernstein's_theorem_(approximation_theory)?oldid=618549696&ns=0
dbo:wikiPageLength
1363
foaf:isPrimaryTopicOf
wikipedia-en:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Bernstein's_theorem
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
dbo:wikiPageDisambiguates
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Jackson's_inequality
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:Sergei_Bernstein
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
dbo:knownFor
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
dbr:List_of_Russian_people
dbo:wikiPageWikiLink
dbr:Bernstein's_theorem_(approximation_theory)
Subject Item
wikipedia-en:Bernstein's_theorem_(approximation_theory)
foaf:primaryTopic
dbr:Bernstein's_theorem_(approximation_theory)