This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n18http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n5https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n10http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Time_series
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Approximate_entropy
rdf:type
dbo:TopicalConcept
rdfs:label
Approximate entropy
rdfs:comment
In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data. For example, consider two series of data: Series A: (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...), which alternates 0 and 1.Series B: (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, ...), which has either a value of 0 or 1, chosen randomly, each with probability 1/2.
foaf:depiction
n10:Heartrate.jpg
dcterms:subject
dbc:Entropy_and_information dbc:Articles_with_example_Python_(programming_language)_code dbc:Time_series
dbo:wikiPageID
34073649
dbo:wikiPageRevisionID
1123697156
dbo:wikiPageWikiLink
dbr:Steve_M._Pincus dbr:Statistics dbr:Human_factors_engineering dbr:Time-series dbr:Finance dbr:U%5Bj%5D_for_j_in_range(i,_i_+_m_-_1_+_1)%5D_for_i_in_range(N_-_m_+_1)%5D dbr:Vector_(mathematics_and_physics) dbr:Unpredictability dbr:Physiology dbc:Entropy_and_information dbr:Kolmogorov–Sinai_entropy dbr:Real_number dbr:Moment_(mathematics) dbr:Sample_entropy dbc:Time_series dbr:Recurrence_quantification_analysis dbr:Window_function dbr:Integer dbc:Articles_with_example_Python_(programming_language)_code dbr:Mean dbr:Rank_order dbr:Variance dbr:Electroencephalography n18:Heartrate.jpg dbr:Natural_logarithm
owl:sameAs
n5:4RUh4 freebase:m.0hr2hy1 wikidata:Q4781760
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cleanup_bare_URLs
dbo:thumbnail
n10:Heartrate.jpg?width=300
dbo:abstract
In statistics, an approximate entropy (ApEn) is a technique used to quantify the amount of regularity and the unpredictability of fluctuations over time-series data. For example, consider two series of data: Series A: (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...), which alternates 0 and 1.Series B: (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, ...), which has either a value of 0 or 1, chosen randomly, each with probability 1/2. Moment statistics, such as mean and variance, will not distinguish between these two series. Nor will rank order statistics distinguish between these series. Yet series A is perfectly regular: knowing a term has the value of 1 enables one to predict with certainty that the next term will have the value of 0. In contrast, series B is randomly valued: knowing a term has the value of 1 gives no insight into what value the next term will have. Regularity was originally measured by exact regularity statistics, which has mainly centered on various entropy measures.However, accurate entropy calculation requires vast amounts of data, and the results will be greatly influenced by system noise, therefore it is not practical to apply these methods to experimental data. ApEn was developed by to handle these limitations by modifying an exact regularity statistic, Kolmogorov–Sinai entropy. ApEn was initially developed to analyze medical data, such as heart rate, and later spread its applications in finance, physiology, human factors engineering, and climate sciences.
gold:hypernym
dbr:Technique
prov:wasDerivedFrom
wikipedia-en:Approximate_entropy?oldid=1123697156&ns=0
dbo:wikiPageLength
14923
foaf:isPrimaryTopicOf
wikipedia-en:Approximate_entropy
Subject Item
dbr:EEG_analysis
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Entropy_(information_theory)
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Correlation_dimension
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Measure-preserving_dynamical_system
rdfs:seeAlso
dbr:Approximate_entropy
Subject Item
dbr:Recurrence_quantification_analysis
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Sample_entropy
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
dbr:Approximate_Entropy
dbo:wikiPageWikiLink
dbr:Approximate_entropy
dbo:wikiPageRedirects
dbr:Approximate_entropy
Subject Item
dbr:List_of_statistics_articles
dbo:wikiPageWikiLink
dbr:Approximate_entropy
Subject Item
wikipedia-en:Approximate_entropy
foaf:primaryTopic
dbr:Approximate_entropy