This HTML5 document contains 62 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Gamma_number
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Glossary_of_set_theory
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Epsilon_number
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Ordinal_arithmetic
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Additively_indecomposable_ordinal
rdf:type
yago:Number113582013 yago:Abstraction100002137 yago:DefiniteQuantity113576101 yago:OrdinalNumber113597280 yago:WikicatOrdinalNumbers yago:Measure100033615
rdfs:label
Additively indecomposable ordinal
rdfs:comment
In set theory, a branch of mathematics, an additively indecomposable ordinal α is any ordinal number that is not 0 such that for any , we have Additively indecomposable ordinals are also called gamma numbers or additive principal numbers. The additively indecomposable ordinals are precisely those ordinals of the form for some ordinal . From the continuity of addition in its right argument, we get that if and α is additively indecomposable, then The class of additively indecomposable numbers is closed and unbounded. Its enumerating function is normal, given by .
dcterms:subject
dbc:Ordinal_numbers
dbo:wikiPageID
17202420
dbo:wikiPageRevisionID
1051920669
dbo:wikiPageWikiLink
dbr:Sequence dbr:Ordinal_number dbr:Order_topology dbr:Infinite_set dbr:Prime_ordinal dbr:Finite_set dbr:Epsilon_numbers_(mathematics) dbr:Knuth's_up-arrow_notation dbr:Feferman–Schütte_ordinal dbr:Fixed_point_(mathematics) dbr:Ordinal_arithmetic dbc:Ordinal_numbers dbr:Set_theory dbr:Initial_ordinal dbr:Cardinal_number dbr:Mathematics
owl:sameAs
wikidata:Q4681349 freebase:m.043rn3q yago-res:Additively_indecomposable_ordinal n15:4LRTb
dbp:wikiPageUsesTemplate
dbt:PlanetMath_attribution dbt:Citation dbt:No_footnotes
dbp:title
Additively indecomposable
dbp:urlname
additivelyindecomposable
dbo:abstract
In set theory, a branch of mathematics, an additively indecomposable ordinal α is any ordinal number that is not 0 such that for any , we have Additively indecomposable ordinals are also called gamma numbers or additive principal numbers. The additively indecomposable ordinals are precisely those ordinals of the form for some ordinal . From the continuity of addition in its right argument, we get that if and α is additively indecomposable, then Obviously 1 is additively indecomposable, since No finite ordinal other than is additively indecomposable. Also, is additively indecomposable, since the sum of two finite ordinals is still finite. More generally, every infinite initial ordinal (an ordinal corresponding to a cardinal number) is additively indecomposable. The class of additively indecomposable numbers is closed and unbounded. Its enumerating function is normal, given by . The derivative of (which enumerates its fixed points) is written Ordinals of this form (that is, fixed points of ) are called epsilon numbers. The number is therefore the first fixed point of the sequence
prov:wasDerivedFrom
wikipedia-en:Additively_indecomposable_ordinal?oldid=1051920669&ns=0
dbo:wikiPageLength
3614
foaf:isPrimaryTopicOf
wikipedia-en:Additively_indecomposable_ordinal
Subject Item
dbr:Additively_indecomposable
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Ordinal_number
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Indecomposability
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Near-semiring
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Indecomposable_ordinal
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Additive_principal
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Additive_principal_ordinal
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Additively_principal
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Additively_principal_ordinal
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
dbr:Delta_number
dbo:wikiPageWikiLink
dbr:Additively_indecomposable_ordinal
dbo:wikiPageRedirects
dbr:Additively_indecomposable_ordinal
Subject Item
wikipedia-en:Additively_indecomposable_ordinal
foaf:primaryTopic
dbr:Additively_indecomposable_ordinal