This HTML5 document contains 146 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n21http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
n20https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-pthttp://pt.dbpedia.org/resource/
n14http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-nlhttp://nl.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Convex_balanced_hull
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Barrelled_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Bornological_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Bounded_set_(topological_vector_space)
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Complete_topological_vector_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Convenient_vector_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Equicontinuity
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Bounded_operator
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Minkowski_functional
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Linear_form
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Locally_convex_topological_vector_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Fréchet_algebra
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Auxiliary_normed_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Balanced_set
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Topological_vector_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Topologies_on_spaces_of_linear_maps
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Webbed_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Absolutely_convex_set
rdf:type
yago:Abstraction100002137 owl:Thing dbo:AnatomicalStructure yago:WikicatPropertiesOfTopologicalSpaces yago:Property113244109 yago:Relation100031921 yago:Possession100032613
rdfs:label
絶対凸集合 Absolutely convex set Conjunto absolutamente convexo 绝对凸集 절대 볼록 집합 Absolutkonvexe Menge Absoluut convexe verzameling Conjunto absolutamente convexo
rdfs:comment
一个实或复向量空间上的集合C,如果它是凸集且是平衡集,则被称为是绝对凸的(英語:absolutely convex)或圆盘化的(英語:disked),在这种情形下C被称为圆盘(英語:Disk)。 Um subconjunto de um espaço vectorial diz-se absolutamente convexo se for convexo e equilibrado. Een deelverzameling van een reële- of complexe vectorruimte noemt men absoluut convex, als zowel convex als evenwichtig is. Equivalent geldt dat absoluut convex is, als voor alle scalairen en met en alle ook is. En matemáticas, un subconjunto C de un espacio vectorial real o complejo se dice que es absolutamente convexo o en forma de disco si es convexo y (algunos utilizan el término circular en lugar de equilibrado), en cuyo caso se llama disco.La envoltura de disco o enovoltura absolutamente convexa de un conjunto es la intersección de todos los discos que contienen ese conjunto. Absolutkonvexe Mengen spielen eine wichtige Rolle in der Theorie der lokalkonvexen Räume, da sie in natürlicher Weise zu Halbnormen führen. 실수나 복소수 벡터 공간의 집합 C 가 볼록이고 원판이라고 불리는 균형 (원으로 싸임)이면 절대 볼록(absolutly convex) 또는 디스크(disked)라고 불린다. In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. 数学の分野において、実あるいは複素ベクトル空間内の集合 C が凸かつ均衡であるとき、その集合は絶対凸(ぜったいとつ、英: absolutely convex)と呼ばれる。
rdfs:seeAlso
dbr:Topological_vector_space
foaf:depiction
n14:Absolute_convex_hull.svg
dct:subject
dbc:Abstract_algebra dbc:Group_theory dbc:Convex_analysis dbc:Convex_geometry dbc:Linear_algebra
dbo:wikiPageID
1734292
dbo:wikiPageRevisionID
1124681668
dbo:wikiPageWikiLink
dbr:Lp_space dbr:Sequence dbc:Abstract_algebra dbr:Homogeneous_function dbr:Mathematics dbr:Union_(set_theory) dbr:Real_number dbc:Group_theory dbr:Inclusion_(mathematics) dbr:Vector_space n21:Absolute_convex_hull.svg dbr:Hour_glass dbr:Isosceles_triangle dbr:Balanced_set dbr:Cambridge_University_Press dbr:Cauchy_sequence dbc:Convex_analysis dbc:Convex_geometry dbr:Seminorm dbr:Intersection_(set_theory) dbr:Subset dbr:Sequentially_complete dbr:Convex_hull dbr:Convex_set dbr:Subadditive_function dbr:Triangle_inequality dbr:Bounded_set_(topological_vector_space) dbr:Absorbing_set dbr:Complex_number dbr:Topological_vector_space dbc:Linear_algebra dbr:Dimension_(vector_space)
owl:sameAs
dbpedia-nl:Absoluut_convexe_verzameling dbpedia-es:Conjunto_absolutamente_convexo dbpedia-pt:Conjunto_absolutamente_convexo dbpedia-ja:絶対凸集合 freebase:m.03bx51g n20:34kyb wikidata:Q332715 dbpedia-ko:절대_볼록_집합 dbpedia-zh:绝对凸集 dbpedia-de:Absolutkonvexe_Menge
dbp:wikiPageUsesTemplate
dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Sfn dbt:Functional_analysis dbt:Reflist dbt:Wikibooks dbt:Annotated_link dbt:Visible_anchor dbt:Em dbt:Topological_vector_spaces dbt:See_also dbt:Cite_book dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Convex_analysis_and_variational_analysis
dbo:thumbnail
n14:Absolute_convex_hull.svg?width=300
dbo:abstract
실수나 복소수 벡터 공간의 집합 C 가 볼록이고 원판이라고 불리는 균형 (원으로 싸임)이면 절대 볼록(absolutly convex) 또는 디스크(disked)라고 불린다. 一个实或复向量空间上的集合C,如果它是凸集且是平衡集,则被称为是绝对凸的(英語:absolutely convex)或圆盘化的(英語:disked),在这种情形下C被称为圆盘(英語:Disk)。 Um subconjunto de um espaço vectorial diz-se absolutamente convexo se for convexo e equilibrado. En matemáticas, un subconjunto C de un espacio vectorial real o complejo se dice que es absolutamente convexo o en forma de disco si es convexo y (algunos utilizan el término circular en lugar de equilibrado), en cuyo caso se llama disco.La envoltura de disco o enovoltura absolutamente convexa de un conjunto es la intersección de todos los discos que contienen ese conjunto. Absolutkonvexe Mengen spielen eine wichtige Rolle in der Theorie der lokalkonvexen Räume, da sie in natürlicher Weise zu Halbnormen führen. Een deelverzameling van een reële- of complexe vectorruimte noemt men absoluut convex, als zowel convex als evenwichtig is. Equivalent geldt dat absoluut convex is, als voor alle scalairen en met en alle ook is. In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. 数学の分野において、実あるいは複素ベクトル空間内の集合 C が凸かつ均衡であるとき、その集合は絶対凸(ぜったいとつ、英: absolutely convex)と呼ばれる。
gold:hypernym
dbr:Convex
prov:wasDerivedFrom
wikipedia-en:Absolutely_convex_set?oldid=1124681668&ns=0
dbo:wikiPageLength
10923
foaf:isPrimaryTopicOf
wikipedia-en:Absolutely_convex_set
Subject Item
dbr:Dual_system
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Absolutely_convex
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Hahn–Banach_theorem
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Absorbing_set
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:LF-space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Bornology
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Polar_topology
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Ultrabornological_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Metrizable_topological_vector_space
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Seminorm
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:List_of_types_of_sets
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Sequentially_complete
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Vector_bornology
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
Subject Item
dbr:Disk_(TVS)
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Disk_(functional_analysis)
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Disked_hull
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Disked_set
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Absolute_convex_hull
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
dbr:Absolutely_convex_envelope
dbo:wikiPageWikiLink
dbr:Absolutely_convex_set
dbo:wikiPageRedirects
dbr:Absolutely_convex_set
Subject Item
wikipedia-en:Absolutely_convex_set
foaf:primaryTopic
dbr:Absolutely_convex_set