An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational geometry, a well-separated pair decomposition (WSPD) of a set of points , is a sequence of pairs of sets , such that each pair is well-separated, and for each two distinct points , there exists precisely one pair which separates the two. The graph induced by a well-separated pair decomposition can serve as a k-spanner of the complete Euclidean graph, and is useful in approximating solutions to several problems pertaining to this.

Property Value
dbo:abstract
  • In computational geometry, a well-separated pair decomposition (WSPD) of a set of points , is a sequence of pairs of sets , such that each pair is well-separated, and for each two distinct points , there exists precisely one pair which separates the two. The graph induced by a well-separated pair decomposition can serve as a k-spanner of the complete Euclidean graph, and is useful in approximating solutions to several problems pertaining to this. (en)
dbo:thumbnail
dbo:wikiPageID
  • 42316777 (xsd:integer)
dbo:wikiPageLength
  • 13890 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1069652723 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In computational geometry, a well-separated pair decomposition (WSPD) of a set of points , is a sequence of pairs of sets , such that each pair is well-separated, and for each two distinct points , there exists precisely one pair which separates the two. The graph induced by a well-separated pair decomposition can serve as a k-spanner of the complete Euclidean graph, and is useful in approximating solutions to several problems pertaining to this. (en)
rdfs:label
  • Well-separated pair decomposition (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License