An Entity of Type: WikicatAbelianVarieties, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Tate's isogeny theorem, proved by Tate, states that two abelian varieties over a finite field are isogeneous if and only if their Tate modules are isomorphic (as Galois representations).

Property Value
dbo:abstract
  • In mathematics, Tate's isogeny theorem, proved by Tate, states that two abelian varieties over a finite field are isogeneous if and only if their Tate modules are isomorphic (as Galois representations). (en)
  • Inom matematiken är Tates isogenisats, bevisad av, ett resultat som säger att två abelska varieteter över en ändlig kropp är om och bara om deras är isomorfiska (som Galoisrepresentationer). (sv)
dbo:wikiPageID
  • 35194136 (xsd:integer)
dbo:wikiPageLength
  • 1089 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1058076977 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, Tate's isogeny theorem, proved by Tate, states that two abelian varieties over a finite field are isogeneous if and only if their Tate modules are isomorphic (as Galois representations). (en)
  • Inom matematiken är Tates isogenisats, bevisad av, ett resultat som säger att två abelska varieteter över en ändlig kropp är om och bara om deras är isomorfiska (som Galoisrepresentationer). (sv)
rdfs:label
  • Tate's isogeny theorem (en)
  • Tates isogenisats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License