An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The relative strength of two systems of formal logic can be defined via model theory. Specifically, a logic is said to be as strong as a logic if every elementary class in is an elementary class in .

Property Value
dbo:abstract
  • The relative strength of two systems of formal logic can be defined via model theory. Specifically, a logic is said to be as strong as a logic if every elementary class in is an elementary class in . (en)
  • De relatieve sterkte van twee systemen van formele logica kan worden gedefinieerd door middel van de modeltheorie. Specifiek zegt men van een logica dat deze sterker is dan een logica wanneer elke elementaire klasse in een elementaire klasse in is. (nl)
dbo:wikiPageID
  • 28870339 (xsd:integer)
dbo:wikiPageLength
  • 744 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1026865005 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • The relative strength of two systems of formal logic can be defined via model theory. Specifically, a logic is said to be as strong as a logic if every elementary class in is an elementary class in . (en)
  • De relatieve sterkte van twee systemen van formele logica kan worden gedefinieerd door middel van de modeltheorie. Specifiek zegt men van een logica dat deze sterker is dan een logica wanneer elke elementaire klasse in een elementaire klasse in is. (nl)
rdfs:label
  • Sterkte (wiskundige logica) (nl)
  • Strength (mathematical logic) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License