An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In order-theoretic mathematics, a graded partially ordered set is said to have the Sperner property (and hence is called a Sperner poset), if no antichain within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain. The Sperner property and Sperner posets are named after Emanuel Sperner, who proved Sperner's theorem stating that the family of all subsets of a finite set (partially ordered by set inclusion) has this property. The lattice of partitions of a finite set typically lacks the Sperner property.

Property Value
dbo:abstract
  • In order-theoretic mathematics, a graded partially ordered set is said to have the Sperner property (and hence is called a Sperner poset), if no antichain within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain. The Sperner property and Sperner posets are named after Emanuel Sperner, who proved Sperner's theorem stating that the family of all subsets of a finite set (partially ordered by set inclusion) has this property. The lattice of partitions of a finite set typically lacks the Sperner property. (en)
dbo:wikiPageID
  • 26534180 (xsd:integer)
dbo:wikiPageLength
  • 2342 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1110103739 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In order-theoretic mathematics, a graded partially ordered set is said to have the Sperner property (and hence is called a Sperner poset), if no antichain within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain. The Sperner property and Sperner posets are named after Emanuel Sperner, who proved Sperner's theorem stating that the family of all subsets of a finite set (partially ordered by set inclusion) has this property. The lattice of partitions of a finite set typically lacks the Sperner property. (en)
rdfs:label
  • Sperner property of a partially ordered set (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License