An Entity of Type: WikicatStatisticalPrinciples, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the statistical analysis of the results from factorial experiments, the sparsity-of-effects principle states that a system is usually dominated by main effects and low-order interactions. Thus it is most likely that main (single factor) effects and two-factor interactions are the most significant responses in a factorial experiment. In other words, higher order interactions such as three-factor interactions are very rare. This is sometimes referred to as the hierarchical ordering principle. The sparsity-of-effects principle actually refers to the idea that only a few effects in a factorial experiment will be statistically significant.

Property Value
dbo:abstract
  • En anàlisi estadística dels resultats de , el principi d'escassetat d'efectes declara que un sistema és normalment dominat pels i les interaccions d'ordre més baix. Amb aquest principi, és més probable que efectes principals (factors únics) i interaccions de dos factors siguin les respostes més significatives en un disseny factorial. En altres paraules, interaccions d'ordre més alt, com interaccions de tres factors, són molt rares. Aquesta observació s'anomena de vegades com a principi jeràrquic ordenant. El principi d’escassetat d’efectes confirma la idea que només uns quants efectes seran estadísticament significants en un disseny factorial. Aquest principi és únicament vàlid en la suposició d'un espai de factors lluny d'un punt estacionari. (ca)
  • In the statistical analysis of the results from factorial experiments, the sparsity-of-effects principle states that a system is usually dominated by main effects and low-order interactions. Thus it is most likely that main (single factor) effects and two-factor interactions are the most significant responses in a factorial experiment. In other words, higher order interactions such as three-factor interactions are very rare. This is sometimes referred to as the hierarchical ordering principle. The sparsity-of-effects principle actually refers to the idea that only a few effects in a factorial experiment will be statistically significant. This principle is only valid on the assumption of a factor space far from a stationary point. (en)
dbo:wikiPageID
  • 3431840 (xsd:integer)
dbo:wikiPageLength
  • 1555 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 751619726 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En anàlisi estadística dels resultats de , el principi d'escassetat d'efectes declara que un sistema és normalment dominat pels i les interaccions d'ordre més baix. Amb aquest principi, és més probable que efectes principals (factors únics) i interaccions de dos factors siguin les respostes més significatives en un disseny factorial. En altres paraules, interaccions d'ordre més alt, com interaccions de tres factors, són molt rares. Aquesta observació s'anomena de vegades com a principi jeràrquic ordenant. El principi d’escassetat d’efectes confirma la idea que només uns quants efectes seran estadísticament significants en un disseny factorial. (ca)
  • In the statistical analysis of the results from factorial experiments, the sparsity-of-effects principle states that a system is usually dominated by main effects and low-order interactions. Thus it is most likely that main (single factor) effects and two-factor interactions are the most significant responses in a factorial experiment. In other words, higher order interactions such as three-factor interactions are very rare. This is sometimes referred to as the hierarchical ordering principle. The sparsity-of-effects principle actually refers to the idea that only a few effects in a factorial experiment will be statistically significant. (en)
rdfs:label
  • Principi d’escassetat d’efectes (ca)
  • Sparsity-of-effects principle (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License