dbo:abstract
|
- Die Sendowsche Vermutung, oft auch als Ilieff-Vermutung oder Ilieff-Sendow-Vermutung bezeichnet, ist eine bislang unbewiesene Vermutung der Funktionentheorie, die im Jahr 1958 durch den bulgarischen Mathematiker Blagowest Sendow (1932–2020) erstmals aufgestellt wurde. (de)
- La conjecture d'Iliev-Sendov est une relation entre les racines d'un polynôme à coefficients complexes, et les racines du polynôme dérivé, et doit son nom à (en) et Lyubomir Iliev, deux mathématiciens bulgares. Elle énonce que, si P est un polynôme dont les racines r1, ..., rn sont dans le disque unité fermé (c'est-à-dire de module au plus 1), alors chaque racine rk est à une distance inférieure ou égale à 1 d'une racine de P'. À noter que d'après le théorème de Gauss-Lucas, les racines de P' sont dans l'enveloppe convexe des rk, et donc a fortiori dans le disque unité. La conjecture a été publiée pour la première fois en 1967, dans le livre Research problems in function theory de Walter Hayman. Elle a été démontrée pour les polynômes de degré au plus 6 en 1991, puis de degré au plus 8 en 1999, mais n'est toujours pas complètement démontrée en 2020. Entre 2002 et 2003, Gerald Schmieder a présenté plusieurs démonstrations de cette conjecture, qui ont toutes été ensuite invalidées. En 2020, une importante avancée a été obtenue par Terence Tao, démontrant le résultat pour des polynômes de degré suffisamment grand. (fr)
- In mathematics, Sendov's conjecture, sometimes also called Ilieff's conjecture, concerns the relationship between the locations of roots and critical points of a polynomial function of a complex variable. It is named after Blagovest Sendov. The conjecture states that for a polynomial with all roots r1, ..., rn inside the closed unit disk |z| ≤ 1, each of the n roots is at a distance no more than 1 from at least one critical point. The Gauss–Lucas theorem says that all of the critical points lie within the convex hull of the roots. It follows that the critical points must be within the unit disk, since the roots are. The conjecture has been proven for n < 9 by Brown-Xiang and for n sufficiently large by Tao. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3073 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Die Sendowsche Vermutung, oft auch als Ilieff-Vermutung oder Ilieff-Sendow-Vermutung bezeichnet, ist eine bislang unbewiesene Vermutung der Funktionentheorie, die im Jahr 1958 durch den bulgarischen Mathematiker Blagowest Sendow (1932–2020) erstmals aufgestellt wurde. (de)
- La conjecture d'Iliev-Sendov est une relation entre les racines d'un polynôme à coefficients complexes, et les racines du polynôme dérivé, et doit son nom à (en) et Lyubomir Iliev, deux mathématiciens bulgares. Elle énonce que, si P est un polynôme dont les racines r1, ..., rn sont dans le disque unité fermé (c'est-à-dire de module au plus 1), alors chaque racine rk est à une distance inférieure ou égale à 1 d'une racine de P'. À noter que d'après le théorème de Gauss-Lucas, les racines de P' sont dans l'enveloppe convexe des rk, et donc a fortiori dans le disque unité. (fr)
- In mathematics, Sendov's conjecture, sometimes also called Ilieff's conjecture, concerns the relationship between the locations of roots and critical points of a polynomial function of a complex variable. It is named after Blagovest Sendov. The conjecture states that for a polynomial with all roots r1, ..., rn inside the closed unit disk |z| ≤ 1, each of the n roots is at a distance no more than 1 from at least one critical point. The conjecture has been proven for n < 9 by Brown-Xiang and for n sufficiently large by Tao. (en)
|
rdfs:label
|
- Sendowsche Vermutung (de)
- Conjecture d'Iliev-Sendov (fr)
- Sendov's conjecture (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |