dbo:abstract
|
- In knot theory, the self-linking number is an invariant of framed knots. It is related to the linking number of curves. A framing of a knot is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a framing is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot C, the self-linking number is defined to be the linking number of C with a new curve obtained by pushing points of C along the framing vectors. Given a Seifert surface for a knot, the associated Seifert framing is obtained by taking a tangent vector to the surface pointing inwards and perpendicular to the knot. The self-linking number obtained from a Seifert framing is always zero. The blackboard framing of a knot is the framing where each of the vectors points in the vertical (z) direction. The self-linking number obtained from the blackboard framing is called the Kauffman self-linking number of the knot. This is not a knot invariant because it is only well-defined up to regular isotopy. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2259 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In knot theory, the self-linking number is an invariant of framed knots. It is related to the linking number of curves. A framing of a knot is a choice of a non-zero non-tangent vector at each point of the knot. More precisely, a framing is a choice of a non-zero section in the normal bundle of the knot, i.e. a (non-zero) normal vector field. Given a framed knot C, the self-linking number is defined to be the linking number of C with a new curve obtained by pushing points of C along the framing vectors. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |