An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem.

Property Value
dbo:abstract
  • In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem. Special cases of Schaefer's dichotomy theorem include the NP-completeness of SAT (the Boolean satisfiability problem) and its two popular variants 1-in-3 SAT and not-all-equal 3SAT (often denoted by NAE-3SAT). In fact, for these two variants of SAT, Schaefer's dichotomy theorem shows that their monotone versions (where negations of variables are not allowed) are also NP-complete. (en)
  • Em teoria da complexidade computacional, um ramo da Ciência da Computação, o teorema da dicotomia de Schaefer estabelece as condições necessárias e suficientes sob as quais um conjunto finito S de relações sobre o domínio Booleano produza problemas de tempo polinomial ouNP-completo quando as relações de S são usadas para restringir algumas das variáveis proposicionais. É chamado de teorema da dicotomia porque a complexidade do problema definido por S será P ou NP-completo em oposição a alguma das classes de complexidade NP-Intermediário que é sabida existir (assumindo P ≠ NP) pelo teorema de . Casos especias do teorema da dicotomia de Schaefer incluem a NP-completude de SAT (o problema da satisfatibilidade Booleana) e suas duas variantes populares 1-in-3 SAT e NAE-3SAT (Not-All-Equal 3SAT). Na verdade, para estas duas variantes de SAT, o teorema da dicotomia de Schaefer nos mostra suas versões monótonas (onde as negações das variáveis não são permitidas) também são NP-completas. (pt)
dbo:wikiPageID
  • 4638322 (xsd:integer)
dbo:wikiPageLength
  • 10858 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1106157370 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In computational complexity theory, a branch of computer science, Schaefer's dichotomy theorem states necessary and sufficient conditions under which a finite set S of relations over the Boolean domain yields polynomial-time or NP-complete problems when the relations of S are used to constrain some of the propositional variables.It is called a dichotomy theorem because the complexity of the problem defined by S is either in P or NP-complete as opposed to one of the classes of intermediate complexity that is known to exist (assuming P ≠ NP) by Ladner's theorem. (en)
  • Em teoria da complexidade computacional, um ramo da Ciência da Computação, o teorema da dicotomia de Schaefer estabelece as condições necessárias e suficientes sob as quais um conjunto finito S de relações sobre o domínio Booleano produza problemas de tempo polinomial ouNP-completo quando as relações de S são usadas para restringir algumas das variáveis proposicionais. (pt)
rdfs:label
  • Schaefer's dichotomy theorem (en)
  • Teorema da Dicotomia de Schaefer (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License