dbo:abstract
|
- In mathematics, S-space is a regular topological space that is hereditarily separable but is not a Lindelöf space. L-space is a regular topological space that is hereditarily Lindelöf but not separable. A space is separable if it has a countable dense set and hereditarily separable if every subspace is separable. It had been believed for a long time that S-space problem and L-space problem are dual, i.e. if there is an S-space in some model of set theory then there is an L-space in the same model and vice versa – which is not true. It was shown in the early 1980s that the existence of S-space is independent of the usual axioms of ZFC. This means that to prove the existence of an S-space or to prove the non-existence of S-space, we need to assume axioms beyond those of ZFC. The L-space problem (whether an L-space can exist without assuming additional set-theoretic assumptions beyond those of ZFC) was not resolved until recently. Todorcevic proved that under PFA there are no S-spaces. This means that every regular hereditarily separable space is Lindelöf. For some time, it was believed the L-space problem would have a similar solution (that its existence would be independent of ZFC). Todorcevic showed that there is a model of set theory with Martin's axiom where there is an L-space but there are no S-spaces. Further, Todorcevic found a compact S-space from a . In 2005, Moore solved the L-space problem by constructing an L-space without assuming additional axioms and by combining Todorcevic's with number theory. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2554 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In mathematics, S-space is a regular topological space that is hereditarily separable but is not a Lindelöf space. L-space is a regular topological space that is hereditarily Lindelöf but not separable. A space is separable if it has a countable dense set and hereditarily separable if every subspace is separable. It had been believed for a long time that S-space problem and L-space problem are dual, i.e. if there is an S-space in some model of set theory then there is an L-space in the same model and vice versa – which is not true. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |