An Entity of Type: WikicatMonteCarloMethods, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions.Thus, the simulation is possible even if the number of parameters in the model is not known. Let be a model indicator and the parameter space whose number of dimensions depends on the model . The model indication need not be finite. The stationary distribution is the joint posterior distribution of that takes the values . The function with

Property Value
dbo:abstract
  • L'algorithme de Metropolis-Hastings à sauts réversibles ou méthode de Monte-Carlo par chaînes de Markov à sauts réversibles (RJMCMC) est un algorithme d'échantillonage dérivé de la Méthode de Monte-Carlo par chaînes de Markov et considérée comme une extension de l'algorithme de Metropolis-Hastings. Inventée en 1995 par Peter Green, elle comprend un paramètre de donnée dimensionnelle de valeur non fixe qui peut varier entre différentes itérations des chaînes de Markov, alors que les modèles précédents ne permettaient que des données dimensionnelles préétablies. (fr)
  • In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions.Thus, the simulation is possible even if the number of parameters in the model is not known. Let be a model indicator and the parameter space whose number of dimensions depends on the model . The model indication need not be finite. The stationary distribution is the joint posterior distribution of that takes the values . The proposal can be constructed with a mapping of and , where is drawn from a random component with density on . The move to state can thus be formulated as The function must be one to one and differentiable, and have a non-zero support: so that there exists an inverse function that is differentiable. Therefore, the and must be of equal dimension, which is the case if the dimension criterion is met where is the dimension of . This is known as dimension matching. If then the dimensional matchingcondition can be reduced to with The acceptance probability will be given by where denotes the absolute value and is the joint posterior probability where is the normalising constant. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6069215 (xsd:integer)
dbo:wikiPageLength
  • 3433 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032021416 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • L'algorithme de Metropolis-Hastings à sauts réversibles ou méthode de Monte-Carlo par chaînes de Markov à sauts réversibles (RJMCMC) est un algorithme d'échantillonage dérivé de la Méthode de Monte-Carlo par chaînes de Markov et considérée comme une extension de l'algorithme de Metropolis-Hastings. Inventée en 1995 par Peter Green, elle comprend un paramètre de donnée dimensionnelle de valeur non fixe qui peut varier entre différentes itérations des chaînes de Markov, alors que les modèles précédents ne permettaient que des données dimensionnelles préétablies. (fr)
  • In computational statistics, reversible-jump Markov chain Monte Carlo is an extension to standard Markov chain Monte Carlo (MCMC) methodology that allows simulation of the posterior distribution on spaces of varying dimensions.Thus, the simulation is possible even if the number of parameters in the model is not known. Let be a model indicator and the parameter space whose number of dimensions depends on the model . The model indication need not be finite. The stationary distribution is the joint posterior distribution of that takes the values . The function with (en)
rdfs:label
  • Algorithme de Metropolis-Hastings à sauts réversibles (fr)
  • Reversible-jump Markov chain Monte Carlo (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License