An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties. Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X.

Property Value
dbo:abstract
  • In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties. Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X. The most basic case is when X is an affine space (that is, X is a finite-dimensional representation of G) and the coordinate ring is a polynomial ring. The most important case is when X is a symmetric variety; i.e., the quotient of G by a fixed-point subgroup of an involution. (en)
dbo:wikiPageID
  • 43165864 (xsd:integer)
dbo:wikiPageLength
  • 3954 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1072010786 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties. Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X. (en)
rdfs:label
  • Representation on coordinate rings (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License