dbo:abstract
|
- In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties. Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X. The most basic case is when X is an affine space (that is, X is a finite-dimensional representation of G) and the coordinate ring is a polynomial ring. The most important case is when X is a symmetric variety; i.e., the quotient of G by a fixed-point subgroup of an involution. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3954 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties. Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X. (en)
|
rdfs:label
|
- Representation on coordinate rings (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |