An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Estimation of a Rasch model is used to estimate the parameters of the Rasch model. Various techniques are employed to estimate the parameters from matrices of response data. The most common approaches are types of maximum likelihood estimation, such as joint and conditional maximum likelihood estimation. Joint maximum likelihood (JML) equations are efficient, but inconsistent for a finite number of items, whereas conditional maximum likelihood (CML) equations give consistent and unbiased item estimates. Person estimates are generally thought to have bias associated with them, although weighted likelihood estimation methods for the estimation of person parameters reduce the bias.

Property Value
dbo:abstract
  • Estimation of a Rasch model is used to estimate the parameters of the Rasch model. Various techniques are employed to estimate the parameters from matrices of response data. The most common approaches are types of maximum likelihood estimation, such as joint and conditional maximum likelihood estimation. Joint maximum likelihood (JML) equations are efficient, but inconsistent for a finite number of items, whereas conditional maximum likelihood (CML) equations give consistent and unbiased item estimates. Person estimates are generally thought to have bias associated with them, although weighted likelihood estimation methods for the estimation of person parameters reduce the bias. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2449968 (xsd:integer)
dbo:wikiPageLength
  • 5154 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1047232292 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Estimation of a Rasch model is used to estimate the parameters of the Rasch model. Various techniques are employed to estimate the parameters from matrices of response data. The most common approaches are types of maximum likelihood estimation, such as joint and conditional maximum likelihood estimation. Joint maximum likelihood (JML) equations are efficient, but inconsistent for a finite number of items, whereas conditional maximum likelihood (CML) equations give consistent and unbiased item estimates. Person estimates are generally thought to have bias associated with them, although weighted likelihood estimation methods for the estimation of person parameters reduce the bias. (en)
rdfs:label
  • Rasch model estimation (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License