dbo:abstract
|
- In the calculus of variations, a subfield of mathematics, quasiconvexity is a generalisation of the notion of convexity. It is used to characterise the integrand of a functional and related to the existence of minimisers. Under some natural conditions, quasiconvexity of the integrand is a necessary and sufficient condition for a functional to be lower semi-continuous in the weak topology, for a sufficient regular domain . By compactness arguments (Banach–Alaoglu theorem) the existence of minimisers of weakly lower semicontinuous functionals may then follow from the direct method.This concept was introduced by Morrey in 1952. This generalisation should not be confused with the same concept of a quasiconvex function which has the same name. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 12263 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In the calculus of variations, a subfield of mathematics, quasiconvexity is a generalisation of the notion of convexity. It is used to characterise the integrand of a functional and related to the existence of minimisers. Under some natural conditions, quasiconvexity of the integrand is a necessary and sufficient condition for a functional (en)
|
rdfs:label
|
- Quasiconvexity (calculus of variations) (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |