dbo:abstract
|
- In logic, predicate abstraction is the result of creating a predicate from a sentence. If Q is any formula then the predicate abstract formed from that sentence is (λy.Q), where λ is an abstraction operator and in which every occurrence of y occurs bound by λ in (λy.Q). The resultant predicate (λx.Q(x)) is a monadic predicate capable of taking a term t as argument as in (λx.Q(x))(t), which says that the object denoted by 't' has the property of being such that Q. The law of abstraction states ( λx.Q(x) )(t) ≡ Q(t/x) where Q(t/x) is the result of replacing all free occurrences of x in Q by t. This law is shown to fail in general in at least two cases: (i) when t is irreferential and (ii) when Q contains modal operators. In modal logic the "de re / de dicto distinction" is stated as 1. (DE DICTO): 2. (DE RE): . In (1) the modal operator applies to the formula A(t) and the term t is within the scope of the modal operator. In (2) t is not within the scope of the modal operator. (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1435 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In logic, predicate abstraction is the result of creating a predicate from a sentence. If Q is any formula then the predicate abstract formed from that sentence is (λy.Q), where λ is an abstraction operator and in which every occurrence of y occurs bound by λ in (λy.Q). The resultant predicate (λx.Q(x)) is a monadic predicate capable of taking a term t as argument as in (λx.Q(x))(t), which says that the object denoted by 't' has the property of being such that Q. In modal logic the "de re / de dicto distinction" is stated as 1. (DE DICTO): 2. (DE RE): . (en)
|
rdfs:label
|
- Predicate abstraction (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |