About: Polaritonics

An Entity of Type: country, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Polaritonics is an intermediate regime between photonics and sub-microwave electronics (see Fig. 1). In this regime, signals are carried by an admixture of electromagnetic and lattice vibrational waves known as phonon-polaritons, rather than currents or photons. Since phonon-polaritons propagate with frequencies in the range of hundreds of gigahertz to several terahertz, polaritonics bridges the gap between electronics and photonics. A compelling motivation for polaritonics is the demand for high speed signal processing and linear and nonlinear terahertz spectroscopy. Polaritonics has distinct advantages over electronics, photonics, and traditional terahertz spectroscopy in that it offers the potential for a fully integrated platform that supports terahertz wave generation, guidance, manip

Property Value
dbo:abstract
  • Polaritonics is an intermediate regime between photonics and sub-microwave electronics (see Fig. 1). In this regime, signals are carried by an admixture of electromagnetic and lattice vibrational waves known as phonon-polaritons, rather than currents or photons. Since phonon-polaritons propagate with frequencies in the range of hundreds of gigahertz to several terahertz, polaritonics bridges the gap between electronics and photonics. A compelling motivation for polaritonics is the demand for high speed signal processing and linear and nonlinear terahertz spectroscopy. Polaritonics has distinct advantages over electronics, photonics, and traditional terahertz spectroscopy in that it offers the potential for a fully integrated platform that supports terahertz wave generation, guidance, manipulation, and readout in a single patterned material. Polaritonics, like electronics and photonics, requires three elements: robust waveform generation, detection, and guidance and control. Without all three, polaritonics would be reduced to just phonon-polaritons, just as electronics and photonics would be reduced to just electromagnetic radiation. These three elements can be combined to enable device functionality similar to that in electronics and photonics. (en)
  • ポラリトニクスは、光学フォノンとフォトンとのカップリングによって生成されるボーズ準粒子であるポラリトンを利用した技術。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1519181 (xsd:integer)
dbo:wikiPageLength
  • 13855 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1078329688 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • ポラリトニクスは、光学フォノンとフォトンとのカップリングによって生成されるボーズ準粒子であるポラリトンを利用した技術。 (ja)
  • Polaritonics is an intermediate regime between photonics and sub-microwave electronics (see Fig. 1). In this regime, signals are carried by an admixture of electromagnetic and lattice vibrational waves known as phonon-polaritons, rather than currents or photons. Since phonon-polaritons propagate with frequencies in the range of hundreds of gigahertz to several terahertz, polaritonics bridges the gap between electronics and photonics. A compelling motivation for polaritonics is the demand for high speed signal processing and linear and nonlinear terahertz spectroscopy. Polaritonics has distinct advantages over electronics, photonics, and traditional terahertz spectroscopy in that it offers the potential for a fully integrated platform that supports terahertz wave generation, guidance, manip (en)
rdfs:label
  • ポラリトニクス (ja)
  • Polaritonics (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License