An Entity of Type: Substitution107443761, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In automata theory, a permutation automaton, or pure-group automaton, is a deterministic finite automaton such that each input symbol permutes the set of states. Formally, a deterministic finite automaton A may be defined by the tuple (Q, Σ, δ, q0, F),where Q is the set of states of the automaton, Σ is the set of input symbols, δ is the transition function that takes a state q and an input symbol x to a new state δ(q,x), q0 is the initial state of the automaton, and F is the set of accepting states (also: final states) of the automaton. A is a permutation automaton if and only if, for every two distinct states qi and qj in Q and every input symbol x in Σ, δ(qi,x) ≠ δ(qj,x).

Property Value
dbo:abstract
  • In automata theory, a permutation automaton, or pure-group automaton, is a deterministic finite automaton such that each input symbol permutes the set of states. Formally, a deterministic finite automaton A may be defined by the tuple (Q, Σ, δ, q0, F),where Q is the set of states of the automaton, Σ is the set of input symbols, δ is the transition function that takes a state q and an input symbol x to a new state δ(q,x), q0 is the initial state of the automaton, and F is the set of accepting states (also: final states) of the automaton. A is a permutation automaton if and only if, for every two distinct states qi and qj in Q and every input symbol x in Σ, δ(qi,x) ≠ δ(qj,x). A formal language is p-regular (also: a pure-group language) if it is accepted by a permutation automaton. For example, the set of strings of even length forms a p-regular language: it may be accepted by a permutation automaton with two states in which every transition replaces one state by the other. (en)
dbo:wikiPageID
  • 1238920 (xsd:integer)
dbo:wikiPageLength
  • 3744 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1072118163 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In automata theory, a permutation automaton, or pure-group automaton, is a deterministic finite automaton such that each input symbol permutes the set of states. Formally, a deterministic finite automaton A may be defined by the tuple (Q, Σ, δ, q0, F),where Q is the set of states of the automaton, Σ is the set of input symbols, δ is the transition function that takes a state q and an input symbol x to a new state δ(q,x), q0 is the initial state of the automaton, and F is the set of accepting states (also: final states) of the automaton. A is a permutation automaton if and only if, for every two distinct states qi and qj in Q and every input symbol x in Σ, δ(qi,x) ≠ δ(qj,x). (en)
rdfs:label
  • Permutation automaton (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License