An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

RNA and tRNA generally has a complex two-dimensional structure. Ruth Nussinov realized that there was a simple way to reveal the structure of RNA and tRNA. The methodology is to create a circle. Each base is numbered. If there are "n" bases, then the numbers are 1 through n. Each number is represented as a dot on the circle, progressively from 1 through n. For bases that are bonded together (for example, 2 and 48, a line is drawn between 2 and 48. The resulting Nussinov plot will easily reveal secondary structures such as cloverleaf structures in RNA or tRNA (the presence of "flowers"). If chords drawn intersect, this corresponds to pseudoknots in the tRNA structure. Pseudoknots imply twists in the RNA or tRNA structure (the RNA or tRNA is not really planar). Lines (bonds between flowers,

Property Value
dbo:abstract
  • RNA and tRNA generally has a complex two-dimensional structure. Ruth Nussinov realized that there was a simple way to reveal the structure of RNA and tRNA. The methodology is to create a circle. Each base is numbered. If there are "n" bases, then the numbers are 1 through n. Each number is represented as a dot on the circle, progressively from 1 through n. For bases that are bonded together (for example, 2 and 48, a line is drawn between 2 and 48. The resulting Nussinov plot will easily reveal secondary structures such as cloverleaf structures in RNA or tRNA (the presence of "flowers"). If chords drawn intersect, this corresponds to pseudoknots in the tRNA structure. Pseudoknots imply twists in the RNA or tRNA structure (the RNA or tRNA is not really planar). Lines (bonds between flowers, for example) explain 3-dimensional folding (tertiary folding). Unfortunately, this is difficult to visualize, thus it is best to see an explanation with diagrams. The spatial geometry of RNA can explain diseases of medical genetics: specifically, when folding and twisting becomes a difficulty for ribosomal processing. (en)
dbo:wikiPageID
  • 32502955 (xsd:integer)
dbo:wikiPageLength
  • 1417 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1109296604 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • RNA and tRNA generally has a complex two-dimensional structure. Ruth Nussinov realized that there was a simple way to reveal the structure of RNA and tRNA. The methodology is to create a circle. Each base is numbered. If there are "n" bases, then the numbers are 1 through n. Each number is represented as a dot on the circle, progressively from 1 through n. For bases that are bonded together (for example, 2 and 48, a line is drawn between 2 and 48. The resulting Nussinov plot will easily reveal secondary structures such as cloverleaf structures in RNA or tRNA (the presence of "flowers"). If chords drawn intersect, this corresponds to pseudoknots in the tRNA structure. Pseudoknots imply twists in the RNA or tRNA structure (the RNA or tRNA is not really planar). Lines (bonds between flowers, (en)
rdfs:label
  • Nussinov plots (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License