An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A group acts 2-transitively on a set if it acts transitively on the set of distinct ordered pairs . That is, assuming (without a real loss of generality) that acts on the left of , for each pair of pairs with and , there exists a such that . The group action is sharply 2-transitive if such is unique. A 2-transitive group is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define sharply 2-transitive group. Equivalently, and , since the induced action on the distinct set of pairs is .

Property Value
dbo:abstract
  • A group acts 2-transitively on a set if it acts transitively on the set of distinct ordered pairs . That is, assuming (without a real loss of generality) that acts on the left of , for each pair of pairs with and , there exists a such that . The group action is sharply 2-transitive if such is unique. A 2-transitive group is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define sharply 2-transitive group. Equivalently, and , since the induced action on the distinct set of pairs is . The definition works in general with k replacing 2. Such multiply transitive permutation groups can be defined for any natural number k. Specifically, a permutation group G acting on n points is k-transitive if, given two sets of points a1, ... ak and b1, ... bk with the property that all the ai are distinct and all the bi are distinct, there is a group element g in G which maps ai to bi for each i between 1 and k. The Mathieu groups are important examples. (en)
  • 2-transitiv grupp är inom gruppteorin en permutationsgrupp där stabilisatorundergruppen av varje punkt verkar transitivt på de återstående punkterna. Alla 2-transitiva grupper är även , men alla primitiva grupper är inte 2-transitiva. Alla är 2-transitiva, men alla 2-transitiva grupper är inte . De lösbara 2-transitiva grupperna klassificerades av och beskrivs i . De olösliga grupperna klassificerades av med hjälp av , och alla är . (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 24657964 (xsd:integer)
dbo:wikiPageLength
  • 4476 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123997412 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 2-transitiv grupp är inom gruppteorin en permutationsgrupp där stabilisatorundergruppen av varje punkt verkar transitivt på de återstående punkterna. Alla 2-transitiva grupper är även , men alla primitiva grupper är inte 2-transitiva. Alla är 2-transitiva, men alla 2-transitiva grupper är inte . De lösbara 2-transitiva grupperna klassificerades av och beskrivs i . De olösliga grupperna klassificerades av med hjälp av , och alla är . (sv)
  • A group acts 2-transitively on a set if it acts transitively on the set of distinct ordered pairs . That is, assuming (without a real loss of generality) that acts on the left of , for each pair of pairs with and , there exists a such that . The group action is sharply 2-transitive if such is unique. A 2-transitive group is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define sharply 2-transitive group. Equivalently, and , since the induced action on the distinct set of pairs is . (en)
rdfs:label
  • Multiply transitive group action (en)
  • 2-transitiv grupp (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License