An Entity of Type: work, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Mostow–Palais theorem is an equivariant version of the Whitney embedding theorem. It states that if a manifold is acted on by a compact Lie group with finitely many orbit types, then it can be embedded into some finite-dimensional orthogonal representation. It was introduced by Mostow and Palais.

Property Value
dbo:abstract
  • In mathematics, the Mostow–Palais theorem is an equivariant version of the Whitney embedding theorem. It states that if a manifold is acted on by a compact Lie group with finitely many orbit types, then it can be embedded into some finite-dimensional orthogonal representation. It was introduced by Mostow and Palais. (en)
  • Inom matematiken är Mostow–Palais sats en ekvivariant version av . Satsen säger att om en Liegrupp verkar på en mångfald, då kan den inbäddas i någon ändligdimensionell ortogonal representation. Satsen introducerades av and. (sv)
dbo:wikiPageID
  • 34779593 (xsd:integer)
dbo:wikiPageLength
  • 1366 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1018104598 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the Mostow–Palais theorem is an equivariant version of the Whitney embedding theorem. It states that if a manifold is acted on by a compact Lie group with finitely many orbit types, then it can be embedded into some finite-dimensional orthogonal representation. It was introduced by Mostow and Palais. (en)
  • Inom matematiken är Mostow–Palais sats en ekvivariant version av . Satsen säger att om en Liegrupp verkar på en mångfald, då kan den inbäddas i någon ändligdimensionell ortogonal representation. Satsen introducerades av and. (sv)
rdfs:label
  • Mostow–Palais theorem (en)
  • Mostow–Palais sats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License