dbo:abstract
|
- In mathematics, the Mostow–Palais theorem is an equivariant version of the Whitney embedding theorem. It states that if a manifold is acted on by a compact Lie group with finitely many orbit types, then it can be embedded into some finite-dimensional orthogonal representation. It was introduced by Mostow and Palais. (en)
- Inom matematiken är Mostow–Palais sats en ekvivariant version av . Satsen säger att om en Liegrupp verkar på en mångfald, då kan den inbäddas i någon ändligdimensionell ortogonal representation. Satsen introducerades av and. (sv)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1366 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Mostow–Palais theorem is an equivariant version of the Whitney embedding theorem. It states that if a manifold is acted on by a compact Lie group with finitely many orbit types, then it can be embedded into some finite-dimensional orthogonal representation. It was introduced by Mostow and Palais. (en)
- Inom matematiken är Mostow–Palais sats en ekvivariant version av . Satsen säger att om en Liegrupp verkar på en mångfald, då kan den inbäddas i någon ändligdimensionell ortogonal representation. Satsen introducerades av and. (sv)
|
rdfs:label
|
- Mostow–Palais theorem (en)
- Mostow–Palais sats (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |