dbo:abstract
|
- In einem Modulationsraum wird die „Größe“ einer Funktion anhand ihres Spektrogramms bestimmt. Anschaulich wird das Spektrogramm in gleich große Abschnitte unterteilt, deren Größe wiederum anhand deren Spektrogramme bestimmt wird; bei einer ähnlichen Beschreibung der Besov-Räume ist die Größe dieser Abschnitte exponentiell anwachsend. Bei Modulationsräumen handelt sich um eine Familie von Banachräumen, in denen eine Funktion mittels ihrer Kurzzeit-Fourier-Transformation mit einer Testfunktion in einem Schwartz-Raum gemessen wird. Ursprünglich von Hans Georg Feichtinger untersucht, erwiesen sich diese Räume als nützlicher Rahmen für die Zeit-Frequenz-Analyse. (de)
- Modulation spaces are a family of Banach spaces defined by the behavior of the short-time Fourier transform withrespect to a test function from the Schwartz space. They were originally proposed by Hans Georg Feichtinger and are recognized to be the right kind of function spaces for time-frequency analysis. , while originally introduced as a new , is identical to a certain modulation space and has become a widely used space of test functions for time-frequency analysis. Modulation spaces are defined as follows. For , a non-negative function on and a test function , the modulation space is defined by In the above equation, denotes the short-time Fourier transform of with respect to evaluated at , namely In other words, is equivalent to . The space is the same, independent of the test function chosen. The canonical choice is a Gaussian. We also have a Besov-type definition of modulation spaces as follows. , where is a suitable unity partition. If , then . (en)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3658 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In einem Modulationsraum wird die „Größe“ einer Funktion anhand ihres Spektrogramms bestimmt. Anschaulich wird das Spektrogramm in gleich große Abschnitte unterteilt, deren Größe wiederum anhand deren Spektrogramme bestimmt wird; bei einer ähnlichen Beschreibung der Besov-Räume ist die Größe dieser Abschnitte exponentiell anwachsend. Bei Modulationsräumen handelt sich um eine Familie von Banachräumen, in denen eine Funktion mittels ihrer Kurzzeit-Fourier-Transformation mit einer Testfunktion in einem Schwartz-Raum gemessen wird. Ursprünglich von Hans Georg Feichtinger untersucht, erwiesen sich diese Räume als nützlicher Rahmen für die Zeit-Frequenz-Analyse. (de)
- Modulation spaces are a family of Banach spaces defined by the behavior of the short-time Fourier transform withrespect to a test function from the Schwartz space. They were originally proposed by Hans Georg Feichtinger and are recognized to be the right kind of function spaces for time-frequency analysis. , while originally introduced as a new , is identical to a certain modulation space and has become a widely used space of test functions for time-frequency analysis. In the above equation, denotes the short-time Fourier transform of with respect to evaluated at , namely , (en)
|
rdfs:label
|
- Modulationsraum (de)
- Modulation space (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |