An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In reinforcement learning (RL), a model-free algorithm (as opposed to a one) is an algorithm which does not use the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward function are often collectively called the "model" of the environment (or MDP), hence the name "model-free". A model-free RL algorithm can be thought of as an "explicit" trial-and-error algorithm. An example of a model-free algorithm is Q-learning.

Property Value
dbo:abstract
  • In reinforcement learning (RL), a model-free algorithm (as opposed to a one) is an algorithm which does not use the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward function are often collectively called the "model" of the environment (or MDP), hence the name "model-free". A model-free RL algorithm can be thought of as an "explicit" trial-and-error algorithm. An example of a model-free algorithm is Q-learning. (en)
  • У навчанні з підкріпленням безмодельний алгоритм (на відміну від заснованого на моделі) — це алгоритм, який не використовує розподіл ймовірностей переходу і функцію винагороди, що пов'язані з Марковським процесом вирішування (МПВ), відображаючим необхідну для розв'язання проблему. Розподіл ймовірностей переходу (або модель переходу) і функцію винагороди зазвичай загалом називають «моделлю» середовища (або МПВ), звідси й назва «безмодельний». Алгоритм безмодельного навчання з підкріпленням можна розглядати як «явний» алгоритм спроб і помилок. Прикладом безмодельного алгоритму може слугувати Q-навчання. (uk)
dbo:wikiPageID
  • 60008386 (xsd:integer)
dbo:wikiPageLength
  • 2656 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1009400678 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In reinforcement learning (RL), a model-free algorithm (as opposed to a one) is an algorithm which does not use the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward function are often collectively called the "model" of the environment (or MDP), hence the name "model-free". A model-free RL algorithm can be thought of as an "explicit" trial-and-error algorithm. An example of a model-free algorithm is Q-learning. (en)
  • У навчанні з підкріпленням безмодельний алгоритм (на відміну від заснованого на моделі) — це алгоритм, який не використовує розподіл ймовірностей переходу і функцію винагороди, що пов'язані з Марковським процесом вирішування (МПВ), відображаючим необхідну для розв'язання проблему. Розподіл ймовірностей переходу (або модель переходу) і функцію винагороди зазвичай загалом називають «моделлю» середовища (або МПВ), звідси й назва «безмодельний». Алгоритм безмодельного навчання з підкріпленням можна розглядати як «явний» алгоритм спроб і помилок. Прикладом безмодельного алгоритму може слугувати Q-навчання. (uk)
rdfs:label
  • Model-free (reinforcement learning) (en)
  • Безмодельне навчання (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License