An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Membrane scaling is when one or more sparingly soluble salts (e.g., calcium carbonate, calcium phosphate, etc.) precipitate and form a dense layer on the membrane surface in reverse osmosis (RO) applications. Figures 1 and 2 show scanning electron microscopy (SEM) images of the RO membrane surface without and with scaling, respectively. Membrane scaling, like other types of membrane fouling, increases energy costs due to higher operating pressure, and reduces permeate water production. Furthermore, scaling may damage and shorten the lifetime of membranes due to frequent membrane cleanings and therefore it is a major operational challenge in RO applications.

Property Value
dbo:abstract
  • Membrane scaling is when one or more sparingly soluble salts (e.g., calcium carbonate, calcium phosphate, etc.) precipitate and form a dense layer on the membrane surface in reverse osmosis (RO) applications. Figures 1 and 2 show scanning electron microscopy (SEM) images of the RO membrane surface without and with scaling, respectively. Membrane scaling, like other types of membrane fouling, increases energy costs due to higher operating pressure, and reduces permeate water production. Furthermore, scaling may damage and shorten the lifetime of membranes due to frequent membrane cleanings and therefore it is a major operational challenge in RO applications. Membrane scaling can occur when sparingly soluble salts in RO concentrate become supersaturated, meaning their concentrations exceed their equilibrium (solubility) levels. In RO processes, the increased concentration of sparingly soluble salts in the concentrate is primarily caused by the withdrawal of permeate water from the feedwater. The ratio of permeate water to feedwater is known as recovery which is directly related to membrane scaling. Recovery needs to be as high as possible in RO installations to minimize specific energy consumption. However, at high recovery rates, the concentration of sparingly soluble salts in the concentrate can increase dramatically. For example, for 80% and 90% recovery, the concentration of salts in the concentrate can reach 5 and 10 times their concentration in the feedwater, respectively. If the calcium and phosphate concentrations in the RO feedwater are 200 mg/L and 5 mg/L, respectively, the concentrations in the RO concentrate will be 1000 mg/L and 50 mg/L at 90% recovery, exceeding the calcium phosphate solubility limit and resulting in calcium phosphate scaling. It is important to note that membrane scaling is not only dependent on supersaturation but also on crystallization kinetics, i.e., nucleation and crystal growth. (en)
dbo:thumbnail
dbo:wikiPageID
  • 70096665 (xsd:integer)
dbo:wikiPageLength
  • 11215 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1080746549 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Membrane scaling is when one or more sparingly soluble salts (e.g., calcium carbonate, calcium phosphate, etc.) precipitate and form a dense layer on the membrane surface in reverse osmosis (RO) applications. Figures 1 and 2 show scanning electron microscopy (SEM) images of the RO membrane surface without and with scaling, respectively. Membrane scaling, like other types of membrane fouling, increases energy costs due to higher operating pressure, and reduces permeate water production. Furthermore, scaling may damage and shorten the lifetime of membranes due to frequent membrane cleanings and therefore it is a major operational challenge in RO applications. (en)
rdfs:label
  • Membrane scaling (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License