An Entity of Type: LiquidBodySubstance105397468, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point. (Denser lines indicate a stronger force.) Plasmas exhibit more complex second-order behaviors, studied as part of magnetohydrodynamics.

Property Value
dbo:abstract
  • The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point. (Denser lines indicate a stronger force.) Plasmas exhibit more complex second-order behaviors, studied as part of magnetohydrodynamics. Thus in the "closed" model of the magnetosphere, the magnetopause boundary between the magnetosphere and the solar wind is outlined by field lines. Not much plasma can cross such a stiff boundary. Its only "weak points" are the two polar cusps, the points where field lines closing at noon (-z axis GSM) get separated from those closing at midnight (+z axis GSM); at such points the field intensity on the boundary is zero, posing no barrier to the entry of plasma. (This simple definition assumes a noon-midnight plane of symmetry, but closed fields lacking such symmetry also must have cusps, by the fixed point theorem.) The amount of solar wind energy and plasma entering the actual magnetosphere depends on how far it departs from such a "closed" configuration, i.e. the extent to which Interplanetary Magnetic Field field lines manage to cross the boundary. As discussed further below, that extent depends very much on the direction of the Interplanetary Magnetic Field, in particular on its southward or northward slant. Trapping of plasma, e.g. of the ring current, also follows the structure of field lines. A particle interacting with this B field experiences a Lorentz Force which is responsible for many of the particle motion in the magnetosphere. Furthermore, Birkeland currents and heat flow are also channeled by such lines — easy along them, blocked in perpendicular directions. Indeed, field lines in the magnetosphere have been likened to the grain in a log of wood, which defines an "easy" direction along which it easily gives way. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3597377 (xsd:integer)
dbo:wikiPageLength
  • 10761 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1116383665 (xsd:integer)
dbo:wikiPageWikiLink
dbp:date
  • March 2018 (en)
dbp:reason
  • Layout of mathematical formulas. (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • The ions and electrons of a plasma interacting with the Earth's magnetic field generally follow its magnetic field lines. These represent the force that a north magnetic pole would experience at any given point. (Denser lines indicate a stronger force.) Plasmas exhibit more complex second-order behaviors, studied as part of magnetohydrodynamics. (en)
rdfs:label
  • Magnetosphere particle motion (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License