An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation to encode and decode the message.

Property Value
dbo:abstract
  • In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation to encode and decode the message. LT codes are rateless because the encoding algorithm can in principle produce an infinite number of message packets (i.e., the percentage of packets that must be received to decode the message can be arbitrarily small). They are erasure correcting codes because they can be used to transmit digital data reliably on an erasure channel. The next generation beyond LT codes are Raptor codes (see for example IETF RFC 5053 or IETF RFC 6330), which have linear time encoding and decoding. Raptor codes are fundamentally based on LT codes, i.e., encoding for Raptor codes uses two encoding stages, where the second stage is LT encoding. Similarly, decoding with Raptor codes primarily relies upon LT decoding, but LT decoding is intermixed with more advanced decoding techniques. The RaptorQ code specified in IETF RFC 6330, which is the most advanced fountain code, has vastly superior decoding probabilities and performance compared to using only an LT code. (en)
  • 盧比變換碼(LT碼,英文:Luby transform codes, LT codes)是第一個最接近完善的抹除碼(erasure correcting codes)的實用湧泉碼(fountain codes),由Michael Luby (页面存档备份,存于互联网档案馆)在1998年發明並於2002年發表。LT碼一個顯著的特徵是採用簡單且基礎的異或(XOR,)來編碼(encode)以及解碼(decode)。 LT碼的另一個特徵是它rateless,由於它可以產生無限量的訊息封包,因此必須將接收到的封包進行解碼的百分比極小。而LT碼之所以屬於抹除碼之一的原因是它可以用在(Binary erasure channel, BEC)上進行傳輸。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2172840 (xsd:integer)
dbo:wikiPageLength
  • 10300 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1041856004 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
rdfs:comment
  • 盧比變換碼(LT碼,英文:Luby transform codes, LT codes)是第一個最接近完善的抹除碼(erasure correcting codes)的實用湧泉碼(fountain codes),由Michael Luby (页面存档备份,存于互联网档案馆)在1998年發明並於2002年發表。LT碼一個顯著的特徵是採用簡單且基礎的異或(XOR,)來編碼(encode)以及解碼(decode)。 LT碼的另一個特徵是它rateless,由於它可以產生無限量的訊息封包,因此必須將接收到的封包進行解碼的百分比極小。而LT碼之所以屬於抹除碼之一的原因是它可以用在(Binary erasure channel, BEC)上進行傳輸。 (zh)
  • In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation to encode and decode the message. (en)
rdfs:label
  • Luby transform code (en)
  • 盧比變換碼 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License