dbo:abstract
|
- In mathematics, the Leray–Hirsch theorem is a basic result on the algebraic topology of fiber bundles. It is named after Jean Leray and Guy Hirsch, who independently proved it in the late 1940s. It can be thought of as a mild generalization of the Künneth formula, which computes the cohomology of a product space as a tensor product of the cohomologies of the direct factors. It is a very special case of the Leray spectral sequence. (en)
- 대수적 위상수학에서 르레-이르슈 정리(Leray-Hirsch定理, 영어: Leray–Hirsch theorem)는 올다발의 전체 공간의 코호몰로지가 적절한 가정 아래 밑공간과 올공간의 코호몰로지의 텐서곱과 (비표준적으로) 동형이라는 정리이다. 퀴네트 정리를 곱공간에서 올다발로 일반화한 것이다. (ko)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2636 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Leray–Hirsch theorem is a basic result on the algebraic topology of fiber bundles. It is named after Jean Leray and Guy Hirsch, who independently proved it in the late 1940s. It can be thought of as a mild generalization of the Künneth formula, which computes the cohomology of a product space as a tensor product of the cohomologies of the direct factors. It is a very special case of the Leray spectral sequence. (en)
- 대수적 위상수학에서 르레-이르슈 정리(Leray-Hirsch定理, 영어: Leray–Hirsch theorem)는 올다발의 전체 공간의 코호몰로지가 적절한 가정 아래 밑공간과 올공간의 코호몰로지의 텐서곱과 (비표준적으로) 동형이라는 정리이다. 퀴네트 정리를 곱공간에서 올다발로 일반화한 것이다. (ko)
|
rdfs:label
|
- Leray–Hirsch theorem (en)
- 르레-이르슈 정리 (ko)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |