dbo:abstract
|
- Lebesgue's universal covering problem is an unsolved problem in geometry that asks for the convex shape of smallest area that can cover every planar set of diameter one. The diameter of a set by definition is the least upper bound of the distances between all pairs of points in the set. A shape covers a set if it contains a congruent subset. In other words the set may be rotated, translated or reflected to fit inside the shape. Unsolved problem in mathematics: What is the minimum area of a convex shape that can cover every planar set of diameter one? (more unsolved problems in mathematics) The problem was posed by Henri Lebesgue in a letter to Gyula Pál in 1914. It was published in a paper by Pál in 1920 along with Pál's analysis. He showed that a cover for all curves of constant width one is also a cover for all sets of diameter one and that a cover can be constructed by taking a regular hexagon with an inscribed circle of diameter one and removing two corners from the hexagon to give a cover of area . (en)
- Задача Лебега состоит в отыскании плоской фигуры наименьшей площади, которая способна накрыть собой любую плоскую фигуру диаметра 1. (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5335 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Задача Лебега состоит в отыскании плоской фигуры наименьшей площади, которая способна накрыть собой любую плоскую фигуру диаметра 1. (ru)
- Lebesgue's universal covering problem is an unsolved problem in geometry that asks for the convex shape of smallest area that can cover every planar set of diameter one. The diameter of a set by definition is the least upper bound of the distances between all pairs of points in the set. A shape covers a set if it contains a congruent subset. In other words the set may be rotated, translated or reflected to fit inside the shape. Unsolved problem in mathematics: What is the minimum area of a convex shape that can cover every planar set of diameter one? (more unsolved problems in mathematics) (en)
|
rdfs:label
|
- Lebesgue's universal covering problem (en)
- Задача Лебега (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |