An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Lattice and bridged-T equalizers are circuits which are used to correct for the amplitude and/or phase errors of a network or transmission line. Usually, the aim is to achieve an overall system performance with a flat amplitude response and constant delay over a prescribed frequency range, by the addition of an equalizer.In the past, designers have used a variety of techniques to realize their equalizer circuits. These include the method of complementary networks; the method of straight line asymptotes; using a purpose built test-jig; the use of standard circuit building blocks,; or with the aid of computer programs. In addition, trial and error methods have been found to be surprisingly effective, when performed by an experienced designer.

Property Value
dbo:abstract
  • Lattice and bridged-T equalizers are circuits which are used to correct for the amplitude and/or phase errors of a network or transmission line. Usually, the aim is to achieve an overall system performance with a flat amplitude response and constant delay over a prescribed frequency range, by the addition of an equalizer.In the past, designers have used a variety of techniques to realize their equalizer circuits. These include the method of complementary networks; the method of straight line asymptotes; using a purpose built test-jig; the use of standard circuit building blocks,; or with the aid of computer programs. In addition, trial and error methods have been found to be surprisingly effective, when performed by an experienced designer. In video or audio channels, equalization results in waveforms that are transmitted with less degradation and have sharper transient edges with reduced overshoots (ringing) than before. In other applications, such as CATV distribution systems or frequency multiplexed telephone signals where multiple carrier signals are being passed, the aim is to equalize the transmission line so that those signals have much the same amplitude. The lattice and bridged-T circuits are favoured for passive equalizers because they can be configured as constant-resistance networks such as the Zobel network, as pointed out by Zobel and later by Bode. The single word description “equalizer” is commonly used when the main purpose of the network is to correct the amplitude response of a system, even though some beneficial phase correction may also be achieved at same time. When phase correction is the main concern, the more explicit term "phase equalizer" or "phase corrector" is used. (In this case, the circuit is usually an all-pass network which does not alter the amplitude response at all such as the lattice phase equalizer). When equalizing a balanced transmission line, the lattice is the best circuit configuration to use, whereas for a single-ended circuit with an earth plane, the bridged-T network is more appropriate. Although equalizer circuits, of either form, can be designed to compensate for a wide range of amplitude and phase characteristics, they can become very complicated when the compensation task is difficult, as is shown later. A variety of methods has been used to design equalizers and some of these are described below. Several of the procedures date back to the early part of the 20th century when equalizers were needed by the rapidly expanding telephone industry. Later, with the advent of television, the equalisation of video links became very important too. (en)
dbo:thumbnail
dbo:wikiPageID
  • 55717769 (xsd:integer)
dbo:wikiPageLength
  • 43855 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 991789887 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Lattice and bridged-T equalizers are circuits which are used to correct for the amplitude and/or phase errors of a network or transmission line. Usually, the aim is to achieve an overall system performance with a flat amplitude response and constant delay over a prescribed frequency range, by the addition of an equalizer.In the past, designers have used a variety of techniques to realize their equalizer circuits. These include the method of complementary networks; the method of straight line asymptotes; using a purpose built test-jig; the use of standard circuit building blocks,; or with the aid of computer programs. In addition, trial and error methods have been found to be surprisingly effective, when performed by an experienced designer. (en)
rdfs:label
  • Lattice and bridged-T equalizers (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License