An Entity of Type: Difference104748836, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Landau–Kolmogorov inequality, named after Edmund Landau and Andrey Kolmogorov, is the following family of interpolation inequalities between different derivatives of a function f defined on a subset T of the real numbers:

Property Value
dbo:abstract
  • En matemàtiques, la desigualtat de Landau-Kolmogorov, anomenada així pels matemàtics Edmund Landau i Andrey Kolmogorov, és la següent família de entre diferents derivades d'una funció f definida en un subconjunt T dels nombres reals: (ca)
  • In mathematics, the Landau–Kolmogorov inequality, named after Edmund Landau and Andrey Kolmogorov, is the following family of interpolation inequalities between different derivatives of a function f defined on a subset T of the real numbers: (en)
dbo:wikiPageID
  • 8564970 (xsd:integer)
dbo:wikiPageLength
  • 3228 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1031571496 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En matemàtiques, la desigualtat de Landau-Kolmogorov, anomenada així pels matemàtics Edmund Landau i Andrey Kolmogorov, és la següent família de entre diferents derivades d'una funció f definida en un subconjunt T dels nombres reals: (ca)
  • In mathematics, the Landau–Kolmogorov inequality, named after Edmund Landau and Andrey Kolmogorov, is the following family of interpolation inequalities between different derivatives of a function f defined on a subset T of the real numbers: (en)
rdfs:label
  • Desigualtat de Landau-Kolmogorov (ca)
  • Landau–Kolmogorov inequality (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License