An Entity of Type: anatomical structure, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant, states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of , and for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = (λ1, ..., λn) is the convex polytope with vertices all permutations of the coordinates of Λ.

Property Value
dbo:abstract
  • In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant, states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of , and for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = (λ1, ..., λn) is the convex polytope with vertices all permutations of the coordinates of Λ. Kostant used this to generalize the Golden–Thompson inequality to all compact groups. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 37872896 (xsd:integer)
dbo:wikiPageLength
  • 13212 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 955922000 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Bertram Kostant (en)
dbp:first
  • Bertram (en)
dbp:last
  • Kostant (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1973 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant, states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of , and for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = (λ1, ..., λn) is the convex polytope with vertices all permutations of the coordinates of Λ. (en)
rdfs:label
  • Kostant's convexity theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License