In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant, states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of , and for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = (λ1, ..., λn) is the convex polytope with vertices all permutations of the coordinates of Λ.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:authorlink |
|
dbp:first |
|
dbp:last |
|
dbp:wikiPageUsesTemplate | |
dbp:year |
|
dcterms:subject | |
gold:hypernym | |
rdf:type |
|
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:knownFor of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is dbp:knownFor of | |
is foaf:primaryTopic of |