An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Johnson scheme, named after Selmer M. Johnson, is also known as the triangular association scheme. It consists of the set of all binary vectors X of length ℓ and weight n, such that . Two vectors x, y ∈ X are called ith associates if dist(x, y) = 2i for i = 0, 1, ..., n. The eigenvalues are given by where and Ek(x) is an Eberlein polynomial defined by

Property Value
dbo:abstract
  • In mathematics, the Johnson scheme, named after Selmer M. Johnson, is also known as the triangular association scheme. It consists of the set of all binary vectors X of length ℓ and weight n, such that . Two vectors x, y ∈ X are called ith associates if dist(x, y) = 2i for i = 0, 1, ..., n. The eigenvalues are given by where and Ek(x) is an Eberlein polynomial defined by (en)
  • 조합론에서 존슨 결합 도식(Johnson結合圖式, 영어: Johnson scheme)은 주어진 해밍 무게의 벡터들로 구성된, 2진 해밍 결합 도식의 부분 결합 도식이다. (ko)
dbo:wikiPageID
  • 22649423 (xsd:integer)
dbo:wikiPageLength
  • 1474 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 862709482 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, the Johnson scheme, named after Selmer M. Johnson, is also known as the triangular association scheme. It consists of the set of all binary vectors X of length ℓ and weight n, such that . Two vectors x, y ∈ X are called ith associates if dist(x, y) = 2i for i = 0, 1, ..., n. The eigenvalues are given by where and Ek(x) is an Eberlein polynomial defined by (en)
  • 조합론에서 존슨 결합 도식(Johnson結合圖式, 영어: Johnson scheme)은 주어진 해밍 무게의 벡터들로 구성된, 2진 해밍 결합 도식의 부분 결합 도식이다. (ko)
rdfs:label
  • Johnson scheme (en)
  • 존슨 결합 도식 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License