An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Vampire bats have developed a specialized system using infrared-sensitive receptors on their nose-leaf to prey on homeothermic (warm-blooded) vertebrates. Trigeminal nerve fibers that innervate these IR-sensitive receptors may be involved in detection of infrared thermal radiation emitted by their prey. This may aid bats in locating blood-rich areas on their prey. In addition, neuroanatomical and molecular research has suggested possible similarities of IR-sensing mechanisms between vampire bats and IR-sensitive snakes. Infrared sensing in vampire bats has not yet been hypothesized to be image forming, as it was for IR-sensitive snakes. While the literature on IR-sensing in vampire bats is thin, progress continues to be made in this field to identify how vampire bats can sense and use infr

Property Value
dbo:abstract
  • Vampire bats have developed a specialized system using infrared-sensitive receptors on their nose-leaf to prey on homeothermic (warm-blooded) vertebrates. Trigeminal nerve fibers that innervate these IR-sensitive receptors may be involved in detection of infrared thermal radiation emitted by their prey. This may aid bats in locating blood-rich areas on their prey. In addition, neuroanatomical and molecular research has suggested possible similarities of IR-sensing mechanisms between vampire bats and IR-sensitive snakes. Infrared sensing in vampire bats has not yet been hypothesized to be image forming, as it was for IR-sensitive snakes. While the literature on IR-sensing in vampire bats is thin, progress continues to be made in this field to identify how vampire bats can sense and use infrared thermal radiation. Vampire bats are the only known mammals whose entire nutrition relies on blood from mammals or birds. In the family Phyllostomidae and the subfamily Desmodontinae, there are three known species of vampire bats: Desmodus rotundus (common vampire bat), Diphylla ecaudata (hairy-legged vampire bat), and Diaemus youngi (white-winged vampire bat). Most of the referenced research on infrared sensing in vampire bats has been done on the common vampire bat because this is the most commonly found species. (en)
dbo:thumbnail
dbo:wikiPageID
  • 33977879 (xsd:integer)
dbo:wikiPageLength
  • 17941 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1043703259 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Vampire bats have developed a specialized system using infrared-sensitive receptors on their nose-leaf to prey on homeothermic (warm-blooded) vertebrates. Trigeminal nerve fibers that innervate these IR-sensitive receptors may be involved in detection of infrared thermal radiation emitted by their prey. This may aid bats in locating blood-rich areas on their prey. In addition, neuroanatomical and molecular research has suggested possible similarities of IR-sensing mechanisms between vampire bats and IR-sensitive snakes. Infrared sensing in vampire bats has not yet been hypothesized to be image forming, as it was for IR-sensitive snakes. While the literature on IR-sensing in vampire bats is thin, progress continues to be made in this field to identify how vampire bats can sense and use infr (en)
rdfs:label
  • Infrared sensing in vampire bats (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License