An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

HFIM, acronym for high-frequency-impulse-measurement, is a type of measurement technique in acoustics, where structure-borne sound signals are detected and processed with certain emphasis on short-lived signals as they are indicative for crack formation in a solid body, mostly steel. The basic idea is to use mathematical signal processing methods such as Fourier analysis in combination with suitable computer hardware to allow for real-time measurements of acoustic signal amplitudes as well as their distribution in frequency space. The main benefit of this technique is the enhanced signal-to-noise ratio when it comes to the separation of acoustic emission from a certain source and other, unwanted contamination by any kinds of noise. The technique is therefore mostly applied in industrial pr

Property Value
dbo:abstract
  • HFIM, Akronym für Hoch-Frequenz-Impuls-Messung (englisch high-frequency-impulse-measurement, ebenfalls HFIM), ist ein spezielles Verfahren der Körperschall-Messung. Hierbei wird noch während des Messvorgangs eine Frequenzanalyse (meist mittels einer Fourier-Transformation) der aufgenommenen Schallamplituden durchgeführt, sodass in Echtzeit nicht nur Informationen über die „Lautstärke“ des vermessenen Vorgangs gewonnen werden, sondern auch deren Frequenzverteilung. Dies ermöglicht die einfache Separation von Störgeräuschen und Nutzsignalen, selbst wenn diese Nutzsignale deutlich schwächer ausgeprägt sind als die Störgeräusche. Anwendung findet das Verfahren daher in der in-line-Überwachung industrieller Fertigungsprozesse, die eine einhundertprozentige Qualitätsüberwachung benötigen. Ebenfalls im Bereich des Condition-Monitorings bzw. der Werkzeugüberwachung (tool wear) findet die HFIM Anwendung. (de)
  • HFIM, acronym for high-frequency-impulse-measurement, is a type of measurement technique in acoustics, where structure-borne sound signals are detected and processed with certain emphasis on short-lived signals as they are indicative for crack formation in a solid body, mostly steel. The basic idea is to use mathematical signal processing methods such as Fourier analysis in combination with suitable computer hardware to allow for real-time measurements of acoustic signal amplitudes as well as their distribution in frequency space. The main benefit of this technique is the enhanced signal-to-noise ratio when it comes to the separation of acoustic emission from a certain source and other, unwanted contamination by any kinds of noise. The technique is therefore mostly applied in industrial production processes, e.g. cold forming or machining, where a 100 percent quality control is required or in condition monitoring for e.g. quantifying tool wear. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 48459845 (xsd:integer)
dbo:wikiPageLength
  • 5904 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1100534085 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • HFIM, Akronym für Hoch-Frequenz-Impuls-Messung (englisch high-frequency-impulse-measurement, ebenfalls HFIM), ist ein spezielles Verfahren der Körperschall-Messung. Hierbei wird noch während des Messvorgangs eine Frequenzanalyse (meist mittels einer Fourier-Transformation) der aufgenommenen Schallamplituden durchgeführt, sodass in Echtzeit nicht nur Informationen über die „Lautstärke“ des vermessenen Vorgangs gewonnen werden, sondern auch deren Frequenzverteilung. Dies ermöglicht die einfache Separation von Störgeräuschen und Nutzsignalen, selbst wenn diese Nutzsignale deutlich schwächer ausgeprägt sind als die Störgeräusche. Anwendung findet das Verfahren daher in der in-line-Überwachung industrieller Fertigungsprozesse, die eine einhundertprozentige Qualitätsüberwachung benötigen. Ebenfa (de)
  • HFIM, acronym for high-frequency-impulse-measurement, is a type of measurement technique in acoustics, where structure-borne sound signals are detected and processed with certain emphasis on short-lived signals as they are indicative for crack formation in a solid body, mostly steel. The basic idea is to use mathematical signal processing methods such as Fourier analysis in combination with suitable computer hardware to allow for real-time measurements of acoustic signal amplitudes as well as their distribution in frequency space. The main benefit of this technique is the enhanced signal-to-noise ratio when it comes to the separation of acoustic emission from a certain source and other, unwanted contamination by any kinds of noise. The technique is therefore mostly applied in industrial pr (en)
rdfs:label
  • HFIM (de)
  • High-frequency impulse-measurement (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License